cayley/graph/and_iterator.go
kortschak 60d5c60817 Canonicalise iterator receiver names
This apparently meaningless churn improves godoc readability.
2014-06-28 21:36:50 +09:30

246 lines
6.7 KiB
Go

// Defines the And iterator, one of the base iterators. And requires no
// knowledge of the constituent TripleStore; its sole purpose is to act as an
// intersection operator across the subiterators it is given. If one iterator
// contains [1,3,5] and another [2,3,4] -- then And is an iterator that
// 'contains' [3]
//
// It accomplishes this in one of two ways. If it is a Next()ed iterator (that
// is, it is a top level iterator, or on the "Next() path", then it will Next()
// it's primary iterator (helpfully, and.primary_it) and Check() the resultant
// value against it's other iterators. If it matches all of them, then it
// returns that value. Otherwise, it repeats the process.
//
// If it's on a Check() path, it merely Check()s every iterator, and returns the
// logical AND of each result.
package graph
import (
"container/list"
"fmt"
"strings"
)
// The And iterator. Consists of a BaseIterator and a number of subiterators, the primary of which will
// be Next()ed if next is called.
type AndIterator struct {
BaseIterator
internalIterators []Iterator
itCount int
primaryIt Iterator
checkList *list.List
}
// Creates a new And iterator.
func NewAndIterator() *AndIterator {
var and AndIterator
BaseIteratorInit(&and.BaseIterator)
and.internalIterators = make([]Iterator, 0, 20)
and.checkList = nil
return &and
}
// Reset all internal iterators
func (it *AndIterator) Reset() {
it.primaryIt.Reset()
for _, sub := range it.internalIterators {
sub.Reset()
}
it.checkList = nil
}
func (it *AndIterator) Clone() Iterator {
and := NewAndIterator()
and.AddSubIterator(it.primaryIt.Clone())
and.CopyTagsFrom(it)
for _, sub := range it.internalIterators {
and.AddSubIterator(sub.Clone())
}
if it.checkList != nil {
and.optimizeCheck()
}
return and
}
// Returns a list.List of the subiterators, in order (primary iterator first).
func (it *AndIterator) GetSubIterators() *list.List {
l := list.New()
l.PushBack(it.primaryIt)
for _, sub := range it.internalIterators {
l.PushBack(sub)
}
return l
}
// Overrides BaseIterator TagResults, as it needs to add it's own results and
// recurse down it's subiterators.
func (it *AndIterator) TagResults(out *map[string]TSVal) {
it.BaseIterator.TagResults(out)
if it.primaryIt != nil {
it.primaryIt.TagResults(out)
}
for _, sub := range it.internalIterators {
sub.TagResults(out)
}
}
// DEPRECATED Returns the ResultTree for this iterator, recurses to it's subiterators.
func (it *AndIterator) GetResultTree() *ResultTree {
tree := NewResultTree(it.LastResult())
tree.AddSubtree(it.primaryIt.GetResultTree())
for _, sub := range it.internalIterators {
tree.AddSubtree(sub.GetResultTree())
}
return tree
}
// Prints information about this iterator.
func (it *AndIterator) DebugString(indent int) string {
var total string
for i, sub := range it.internalIterators {
total += strings.Repeat(" ", indent+2)
total += fmt.Sprintf("%d:\n%s\n", i, sub.DebugString(indent+4))
}
var tags string
for _, k := range it.Tags() {
tags += fmt.Sprintf("%s;", k)
}
spaces := strings.Repeat(" ", indent+2)
return fmt.Sprintf("%s(%s %d\n%stags:%s\n%sprimary_it:\n%s\n%sother_its:\n%s)",
strings.Repeat(" ", indent),
it.Type(),
it.GetUid(),
spaces,
tags,
spaces,
it.primaryIt.DebugString(indent+4),
spaces,
total)
}
// Add a subiterator to this And iterator.
//
// The first iterator that is added becomes the primary iterator. This is
// important. Calling Optimize() is the way to change the order based on
// subiterator statistics. Without Optimize(), the order added is the order
// used.
func (it *AndIterator) AddSubIterator(sub Iterator) {
if it.itCount > 0 {
it.internalIterators = append(it.internalIterators, sub)
it.itCount++
return
}
it.primaryIt = sub
it.itCount++
}
// Returns the Next value from the And iterator. Because the And is the
// intersection of its subiterators, it must choose one subiterator to produce a
// candidate, and check this value against the subiterators. A productive choice
// of primary iterator is therefore very important.
func (it *AndIterator) Next() (TSVal, bool) {
NextLogIn(it)
var curr TSVal
var exists bool
for {
curr, exists = it.primaryIt.Next()
if !exists {
return NextLogOut(it, nil, false)
}
if it.checkSubIts(curr) {
it.Last = curr
return NextLogOut(it, curr, true)
}
}
panic("Somehow broke out of Next() loop in AndIterator")
}
// Checks a value against the non-primary iterators, in order.
func (it *AndIterator) checkSubIts(val TSVal) bool {
var subIsGood = true
for _, sub := range it.internalIterators {
subIsGood = sub.Check(val)
if !subIsGood {
break
}
}
return subIsGood
}
func (it *AndIterator) checkCheckList(val TSVal) bool {
var isGood = true
for e := it.checkList.Front(); e != nil; e = e.Next() {
isGood = e.Value.(Iterator).Check(val)
if !isGood {
break
}
}
return CheckLogOut(it, val, isGood)
}
// Check a value against the entire iterator, in order.
func (it *AndIterator) Check(val TSVal) bool {
CheckLogIn(it, val)
if it.checkList != nil {
return it.checkCheckList(val)
}
mainGood := it.primaryIt.Check(val)
if !mainGood {
return CheckLogOut(it, val, false)
}
othersGood := it.checkSubIts(val)
if !othersGood {
return CheckLogOut(it, val, false)
}
it.Last = val
return CheckLogOut(it, val, true)
}
// Returns the approximate size of the And iterator. Because we're dealing
// with an intersection, we know that the largest we can be is the size of the
// smallest iterator. This is the heuristic we shall follow. Better heuristics
// welcome.
func (it *AndIterator) Size() (int64, bool) {
val, b := it.primaryIt.Size()
for _, sub := range it.internalIterators {
newval, newb := sub.Size()
if val > newval {
val = newval
}
b = newb && b
}
return val, b
}
// An And has no NextResult of its own -- that is, there are no other values
// which satisfy our previous result that are not the result itself. Our
// subiterators might, however, so just pass the call recursively.
func (it *AndIterator) NextResult() bool {
if it.primaryIt.NextResult() {
return true
}
for _, sub := range it.internalIterators {
if sub.NextResult() {
return true
}
}
return false
}
// Perform and-specific cleanup, of which there currently is none.
func (it *AndIterator) cleanUp() {}
// Close this iterator, and, by extension, close the subiterators.
// Close should be idempotent, and it follows that if it's subiterators
// follow this contract, the And follows the contract.
func (it *AndIterator) Close() {
it.cleanUp()
it.primaryIt.Close()
for _, sub := range it.internalIterators {
sub.Close()
}
}
// Register this as an "and" iterator.
func (it *AndIterator) Type() string { return "and" }