Refactor for readability

Added more documentation, converted logical operations to (hopefully)
consistent 'route' metaphor, and moved all AND(iterator, iterator)
stanzas out into a single join() function that is more descriptive of
what's actually happening
This commit is contained in:
Tyler Gibbons 2015-10-01 19:09:33 -07:00
parent 42aa91b77f
commit 51f5a86232
2 changed files with 116 additions and 85 deletions

View file

@ -1,4 +1,4 @@
// Copyright 2014 The Cayley Authors. All rights reserved.
// Copyright 2015 The Cayley Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
@ -20,58 +20,80 @@ import (
"github.com/google/cayley/quad"
)
// join puts two iterators together by intersecting their result sets with an AND
// Since we're using an and iterator, it's a good idea to put the smallest result
// set first so that Next() produces fewer values to check Contains()
func join(qs graph.QuadStore, itL, itR graph.Iterator) graph.Iterator {
and := iterator.NewAnd(qs)
and.AddSubIterator(itL)
and.AddSubIterator(itR)
return and
}
// isMorphism represents all nodes passed in-- if there are none, this function
// acts as a passthrough for the previous iterator
func isMorphism(nodes ...string) morphism {
return morphism{
Name: "is",
Reversal: func() morphism { return isMorphism(nodes...) },
Apply: func(qs graph.QuadStore, it graph.Iterator) graph.Iterator {
var sub graph.Iterator
Apply: func(qs graph.QuadStore, in graph.Iterator) graph.Iterator {
if len(nodes) == 0 {
sub = qs.NodesAllIterator()
} else {
fixed := qs.FixedIterator()
// Acting as a passthrough here is equivalent to
// building a NodesAllIterator to Next() or Contains()
// from here as in previous versions
return in
}
isNodes := ls.FixedIterator()
for _, n := range nodes {
fixed.Add(qs.ValueOf(n))
isNodes.Add(qs.ValueOf(n))
}
sub = fixed
}
and := iterator.NewAnd(qs)
and.AddSubIterator(sub)
and.AddSubIterator(it)
return and
// Anything with fixedIterators will usually have a much
// smaller result set, so join isNodes first here
return join(qs, isNodes, in)
},
}
}
// hasMorphism is
func hasMorphism(via interface{}, nodes ...string) morphism {
return morphism{
Name: "has",
Reversal: func() morphism { return hasMorphism(via, nodes...) },
Apply: func(qs graph.QuadStore, it graph.Iterator) graph.Iterator {
var sub graph.Iterator
Apply: func(qs graph.QuadStore, in graph.Iterator) graph.Iterator {
viaIter := buildViaPath(qs, via).
BuildIterator()
ends := func() graph.Iterator {
if len(nodes) == 0 {
sub = qs.NodesAllIterator()
} else {
return qs.NodesAllIterator()
}
fixed := qs.FixedIterator()
for _, n := range nodes {
fixed.Add(qs.ValueOf(n))
}
sub = fixed
return fixed
}()
trail := iterator.NewLinksTo(qs, viaIter, quad.Predicate)
dest := iterator.NewLinksTo(qs, ends, graph.Object)
// If we were given nodes, intersecting with them first will
// be extremely cheap-- otherwise, it will be the most expensive
// (requiring iteration over all nodes). We have enough info to
// make this optimization now since intersections are commutative
if len(nodes) == 0 { // Where dest involves an All iterator
route := join(qs, trail, dest)
has := iterator.NewHasA(qs, route, graph.Subject)
return join(qs, in, has)
}
var viaPath *Path
if via != nil {
viaPath = buildViaPath(qs, via)
} else {
viaPath = buildViaPath(qs)
}
subAnd := iterator.NewAnd(qs)
subAnd.AddSubIterator(iterator.NewLinksTo(qs, sub, quad.Object))
subAnd.AddSubIterator(iterator.NewLinksTo(qs, viaPath.BuildIterator(), quad.Predicate))
hasa := iterator.NewHasA(qs, subAnd, quad.Subject)
and := iterator.NewAnd(qs)
and.AddSubIterator(it)
and.AddSubIterator(hasa)
return and
// This looks backwards. That's OK-- see the note above
route := join(qs, dest, trail)
has := iterator.NewHasA(qs, route, graph.Subject)
return join(qs, has, in)
},
}
}
@ -90,6 +112,7 @@ func tagMorphism(tags ...string) morphism {
}
}
// outMorphism iterates forward one RDF triple or via an entire path
func outMorphism(via ...interface{}) morphism {
return morphism{
Name: "out",
@ -101,6 +124,7 @@ func outMorphism(via ...interface{}) morphism {
}
}
// inMorphism iterates backwards one RDF triple or via an entire path
func inMorphism(via ...interface{}) morphism {
return morphism{
Name: "in",
@ -112,43 +136,42 @@ func inMorphism(via ...interface{}) morphism {
}
}
// iteratorMorphism simply tacks the input iterator onto the chain
func iteratorMorphism(it graph.Iterator) morphism {
return morphism{
Name: "iterator",
Reversal: func() morphism { return iteratorMorphism(it) },
Apply: func(qs graph.QuadStore, subIt graph.Iterator) graph.Iterator {
and := iterator.NewAnd(qs)
and.AddSubIterator(it)
and.AddSubIterator(subIt)
return and
return join(qs, it, subIt)
},
}
}
// andMorphism sticks a path onto the current iterator chain
func andMorphism(p *Path) morphism {
return morphism{
Name: "and",
Reversal: func() morphism { return andMorphism(p) },
Apply: func(qs graph.QuadStore, it graph.Iterator) graph.Iterator {
subIt := p.BuildIteratorOn(qs)
and := iterator.NewAnd(qs)
and.AddSubIterator(it)
and.AddSubIterator(subIt)
return and
Apply: func(qs graph.QuadStore, itL graph.Iterator) graph.Iterator {
itR := p.BuildIteratorOn(qs)
return join(qs, itL, itR)
},
}
}
// orMorphism is the union, vice intersection, of a path and the current iterator
func orMorphism(p *Path) morphism {
return morphism{
Name: "or",
Reversal: func() morphism { return orMorphism(p) },
Apply: func(qs graph.QuadStore, it graph.Iterator) graph.Iterator {
subIt := p.BuildIteratorOn(qs)
and := iterator.NewOr()
and.AddSubIterator(it)
and.AddSubIterator(subIt)
return and
Apply: func(qs graph.QuadStore, itL graph.Iterator) graph.Iterator {
itR := p.BuildIteratorOn(qs)
or := iterator.NewOr()
or.AddSubIterator(itL)
or.AddSubIterator(itR)
return or
},
}
}
@ -163,17 +186,17 @@ func followMorphism(p *Path) morphism {
}
}
// exceptMorphism removes all results on p.(*Path) from the current iterators
func exceptMorphism(p *Path) morphism {
return morphism{
Name: "except",
Reversal: func() morphism { return exceptMorphism(p) },
Apply: func(qs graph.QuadStore, base graph.Iterator) graph.Iterator {
subIt := p.BuildIteratorOn(qs)
notIt := iterator.NewNot(subIt, qs.NodesAllIterator())
and := iterator.NewAnd(qs)
and.AddSubIterator(base)
and.AddSubIterator(notIt)
return and
in := p.BuildIteratorOn(qs)
allNodes := qs.NodesAllIterator()
notIn := iterator.NewNot(in, allNodes)
return join(qs, base, notIn)
},
}
}
@ -200,40 +223,44 @@ func saveReverseMorphism(via interface{}, tag string) morphism {
}
}
func buildSave(qs graph.QuadStore, via interface{}, tag string, it graph.Iterator, reverse bool) graph.Iterator {
all := qs.NodesAllIterator()
func buildSave(
qs graph.QuadStore, via interface{},
tag string, from graph.Iterator, reverse bool,
) graph.Iterator {
allNodes := qs.NodesAllIterator()
all.Tagger().Add(tag)
node, allDir := quad.Subject, quad.Object
var viaPath *Path
if via != nil {
viaPath = buildViaPath(qs, via)
} else {
viaPath = buildViaPath(qs)
}
start, goal := graph.Subject, graph.Object
if reverse {
node, allDir = allDir, node
start, goal = goal, start
}
lto := iterator.NewLinksTo(qs, all, allDir)
subAnd := iterator.NewAnd(qs)
subAnd.AddSubIterator(iterator.NewLinksTo(qs, viaPath.BuildIterator(), quad.Predicate))
subAnd.AddSubIterator(lto)
hasa := iterator.NewHasA(qs, subAnd, node)
and := iterator.NewAnd(qs)
and.AddSubIterator(hasa)
and.AddSubIterator(it)
return and
viaIter := buildViaPath(qs, via).
BuildIterator()
dest := iterator.NewLinksTo(qs, allNodes, goal)
trail := iterator.NewLinksTo(qs, viaIter, graph.Predicate)
route := join(qs, trail, dest)
save := iterator.NewHasA(qs, route, start)
return join(qs, from, save)
}
func inOutIterator(viaPath *Path, it graph.Iterator, reverse bool) graph.Iterator {
in, out := quad.Subject, quad.Object
if reverse {
in, out = out, in
func inOutIterator(viaPath *Path, from graph.Iterator, inIterator bool) graph.Iterator {
start, goal := quad.Subject, quad.Object
if inIterator {
start, goal = goal, start
}
lto := iterator.NewLinksTo(viaPath.qs, it, in)
and := iterator.NewAnd(viaPath.qs)
and.AddSubIterator(iterator.NewLinksTo(viaPath.qs, viaPath.BuildIterator(), quad.Predicate))
and.AddSubIterator(lto)
return iterator.NewHasA(viaPath.qs, and, out)
viaIter := viaPath.BuildIterator()
source := iterator.NewLinksTo(viaPath.qs, from, start)
trail := iterator.NewLinksTo(viaPath.qs, viaIter, graph.Predicate)
route := join(viaPath.qs, source, trail)
return iterator.NewHasA(viaPath.qs, route, goal)
}
func buildViaPath(qs graph.QuadStore, via ...interface{}) *Path {

View file

@ -1,4 +1,4 @@
// Copyright 2014 The Cayley Authors. All rights reserved.
// Copyright 2015 The Cayley Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
@ -140,11 +140,15 @@ func (p *Path) Except(path *Path) *Path {
return p
}
// Follow allows you to stitch two paths together. The resulting path will start
// from where the first path left off and continue iterating down the path given
func (p *Path) Follow(path *Path) *Path {
p.stack = append(p.stack, followMorphism(path))
return p
}
// FollowReverse is the same as follow, except it will iterate backwards up the
// path given as argument
func (p *Path) FollowReverse(path *Path) *Path {
p.stack = append(p.stack, followMorphism(path.Reverse()))
return p