Added more documentation, converted logical operations to (hopefully) consistent 'route' metaphor, and moved all AND(iterator, iterator) stanzas out into a single join() function that is more descriptive of what's actually happening
211 lines
6.6 KiB
Go
211 lines
6.6 KiB
Go
// Copyright 2015 The Cayley Authors. All rights reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package path
|
|
|
|
import "github.com/google/cayley/graph"
|
|
|
|
type morphism struct {
|
|
Name string
|
|
Reversal func() morphism
|
|
Apply graph.ApplyMorphism
|
|
tags []string
|
|
}
|
|
|
|
// Path represents either a morphism (a pre-defined path stored for later use),
|
|
// or a concrete path, consisting of a morphism and an underlying QuadStore.
|
|
type Path struct {
|
|
stack []morphism
|
|
qs graph.QuadStore // Optionally. A nil qs is equivalent to a morphism.
|
|
}
|
|
|
|
// IsMorphism returns whether this Path is a morphism.
|
|
func (p *Path) IsMorphism() bool { return p.qs == nil }
|
|
|
|
// StartMorphism creates a new Path with no underlying QuadStore.
|
|
func StartMorphism(nodes ...string) *Path {
|
|
return StartPath(nil, nodes...)
|
|
}
|
|
|
|
// StartPath creates a new Path from a set of nodes and an underlying QuadStore.
|
|
func StartPath(qs graph.QuadStore, nodes ...string) *Path {
|
|
return &Path{
|
|
stack: []morphism{
|
|
isMorphism(nodes...),
|
|
},
|
|
qs: qs,
|
|
}
|
|
}
|
|
|
|
func PathFromIterator(qs graph.QuadStore, it graph.Iterator) *Path {
|
|
return &Path{
|
|
stack: []morphism{
|
|
iteratorMorphism(it),
|
|
},
|
|
qs: qs,
|
|
}
|
|
}
|
|
|
|
// NewPath creates a new, empty Path.
|
|
func NewPath(qs graph.QuadStore) *Path {
|
|
return &Path{
|
|
qs: qs,
|
|
}
|
|
}
|
|
|
|
// Reverse returns a new Path that is the reverse of the current one.
|
|
func (p *Path) Reverse() *Path {
|
|
newPath := NewPath(p.qs)
|
|
for i := len(p.stack) - 1; i >= 0; i-- {
|
|
newPath.stack = append(newPath.stack, p.stack[i].Reversal())
|
|
}
|
|
return newPath
|
|
}
|
|
|
|
// Is declares that the current nodes in this path are only the nodes
|
|
// passed as arguments.
|
|
func (p *Path) Is(nodes ...string) *Path {
|
|
p.stack = append(p.stack, isMorphism(nodes...))
|
|
return p
|
|
}
|
|
|
|
// Tag adds tag strings to the nodes at this point in the path for each result
|
|
// path in the set.
|
|
func (p *Path) Tag(tags ...string) *Path {
|
|
p.stack = append(p.stack, tagMorphism(tags...))
|
|
return p
|
|
}
|
|
|
|
// Out updates this Path to represent the nodes that are adjacent to the
|
|
// current nodes, via the given outbound predicate.
|
|
//
|
|
// For example:
|
|
// // Returns the list of nodes that "A" follows.
|
|
// //
|
|
// // Will return []string{"B"} if there is a predicate (edge) from "A"
|
|
// // to "B" labelled "follows".
|
|
// StartPath(qs, "A").Out("follows")
|
|
func (p *Path) Out(via ...interface{}) *Path {
|
|
p.stack = append(p.stack, outMorphism(via...))
|
|
return p
|
|
}
|
|
|
|
// In updates this Path to represent the nodes that are adjacent to the
|
|
// current nodes, via the given inbound predicate.
|
|
//
|
|
// For example:
|
|
// // Return the list of nodes that follow "B".
|
|
// //
|
|
// // Will return []string{"A", "C", "D"} if there are the appropriate
|
|
// // edges from those nodes to "B" labelled "follows".
|
|
// StartPath(qs, "B").In("follows")
|
|
func (p *Path) In(via ...interface{}) *Path {
|
|
p.stack = append(p.stack, inMorphism(via...))
|
|
return p
|
|
}
|
|
|
|
// And updates the current Path to represent the nodes that match both the
|
|
// current Path so far, and the given Path.
|
|
func (p *Path) And(path *Path) *Path {
|
|
p.stack = append(p.stack, andMorphism(path))
|
|
return p
|
|
}
|
|
|
|
// And updates the current Path to represent the nodes that match either the
|
|
// current Path so far, or the given Path.
|
|
func (p *Path) Or(path *Path) *Path {
|
|
p.stack = append(p.stack, orMorphism(path))
|
|
return p
|
|
}
|
|
|
|
// Except updates the current Path to represent the all of the current nodes
|
|
// except those in the supplied Path.
|
|
//
|
|
// For example:
|
|
// // Will return []string{"B"}
|
|
// StartPath(qs, "A", "B").Except(StartPath(qs, "A"))
|
|
func (p *Path) Except(path *Path) *Path {
|
|
p.stack = append(p.stack, exceptMorphism(path))
|
|
return p
|
|
}
|
|
|
|
// Follow allows you to stitch two paths together. The resulting path will start
|
|
// from where the first path left off and continue iterating down the path given
|
|
func (p *Path) Follow(path *Path) *Path {
|
|
p.stack = append(p.stack, followMorphism(path))
|
|
return p
|
|
}
|
|
|
|
// FollowReverse is the same as follow, except it will iterate backwards up the
|
|
// path given as argument
|
|
func (p *Path) FollowReverse(path *Path) *Path {
|
|
p.stack = append(p.stack, followMorphism(path.Reverse()))
|
|
return p
|
|
}
|
|
|
|
// Save will, from the current nodes in the path, retrieve the node
|
|
// one linkage away (given by either a path or a predicate), add the given
|
|
// tag, and propagate that to the result set.
|
|
//
|
|
// For example:
|
|
// // Will return []map[string]string{{"social_status: "cool"}}
|
|
// StartPath(qs, "B").Save("status", "social_status"
|
|
func (p *Path) Save(via interface{}, tag string) *Path {
|
|
p.stack = append(p.stack, saveMorphism(via, tag))
|
|
return p
|
|
}
|
|
|
|
// SaveReverse is the same as Save, only in the reverse direction
|
|
// (the subject of the linkage should be tagged, instead of the object)
|
|
func (p *Path) SaveReverse(via interface{}, tag string) *Path {
|
|
p.stack = append(p.stack, saveReverseMorphism(via, tag))
|
|
return p
|
|
}
|
|
|
|
// Has limits the paths to be ones where the current nodes have some linkage
|
|
// to some known node.
|
|
func (p *Path) Has(via interface{}, nodes ...string) *Path {
|
|
p.stack = append(p.stack, hasMorphism(via, nodes...))
|
|
return p
|
|
}
|
|
|
|
// BuildIterator returns an iterator from this given Path. Note that you must
|
|
// call this with a full path (not a morphism), since a morphism does not have
|
|
// the ability to fetch the underlying quads. This function will panic if
|
|
// called with a morphism (i.e. if p.IsMorphism() is true).
|
|
func (p *Path) BuildIterator() graph.Iterator {
|
|
if p.IsMorphism() {
|
|
panic("Building an iterator from a morphism. Bind a QuadStore with BuildIteratorOn(qs)")
|
|
}
|
|
return p.BuildIteratorOn(p.qs)
|
|
}
|
|
|
|
// BuildIteratorOn will return an iterator for this path on the given QuadStore.
|
|
func (p *Path) BuildIteratorOn(qs graph.QuadStore) graph.Iterator {
|
|
return p.Morphism()(qs, qs.NodesAllIterator())
|
|
}
|
|
|
|
// Morphism returns the morphism of this path. The returned value is a
|
|
// function that, when given a QuadStore and an existing Iterator, will
|
|
// return a new Iterator that yields the subset of values from the existing
|
|
// iterator matched by the current Path.
|
|
func (p *Path) Morphism() graph.ApplyMorphism {
|
|
return func(qs graph.QuadStore, it graph.Iterator) graph.Iterator {
|
|
i := it.Clone()
|
|
for _, m := range p.stack {
|
|
i = m.Apply(qs, i)
|
|
}
|
|
return i
|
|
}
|
|
}
|