using potentials

This commit is contained in:
Barak Michener 2013-07-28 13:13:42 -04:00
parent 4358836270
commit ef9ba1aafe

297
tim.py
View file

@ -4,7 +4,6 @@ import itertools
from collections import defaultdict as dd
import pprint
import numpy
from numpy.random import random
def ResistanceGame(n_players):
@ -20,43 +19,40 @@ def BuildNbyNBeliefMatrix(id, n_players):
for player_id in range(n_players):
vec = mc.Uniform("%d_trust_%d" % (id, player_id),
0.0, 1.0,
trace=False,
size=n_players)
trace=True,
size=n_players,
value=(numpy.ones(n_players) * (1.0 / n_players)))
matrix.append(vec)
all_vars.append(vec)
# Enforce that there's only one role for each player.
for i, player_vec in enumerate(matrix):
det_var = sum(vec)
all_vars.append(det_var)
obs = mc.Bernoulli(
"player_%d_one_role_constraint_%d" % (id, i),
det_var,
value=1.0,
trace=False,
observed=True)
all_vars.append(obs)
@mc.potential
def obs_one_role(player_vec=player_vec):
return mc.distributions.normal_like(
sum(player_vec),
1.0,
100)
all_vars.append(obs_one_role)
# Enforce that there's only one player per role.
for i in range(n_players):
det_var = sum([vec[i] for vec in matrix])
all_vars.append(det_var)
obs = mc.Bernoulli(
"player_%d_one_player_constraint_%d" % (id, i),
det_var,
value=1.0,
trace=False,
observed=True)
all_vars.append(obs)
@mc.potential
def obs_one_per_role(matrix=matrix):
return mc.distributions.normal_like(
sum([vec[i] for vec in matrix]),
1.0,
100)
all_vars.append(obs_one_per_role)
return matrix, all_vars
class Player(object):
''' Representing all that the player is and knows '''
def __init__(self, id, game, side_var, role_var):
def __init__(self, id, game):
self.id = id
self.game = game
self.side_var = side_var
self.role_var = role_var
self.all_vars = []
self.build_belief_matrix()
@ -67,53 +63,18 @@ class Player(object):
return self.role_var
def build_belief_matrix(self):
self.matrix = []
self.matrix, self.all_vars = \
BuildNbyNBeliefMatrix(self.id, self.game.n_players)
# Enforce that the player completely knows her own role.
def player_knows_self(self_role=self.role_var):
return self.matrix[self.id][self_role]
knows = mc.Deterministic(eval=player_knows_self,
name="player_knows_self_%d" % self.id,
parents={"self_role": self.role_var},
doc="Player knows self %d" % self.id,
dtype=float,
trace=True,
plot=False)
@mc.potential
def knows(deck_var=self.game.deck_var, matrix=self.matrix):
role_id = self.game.player_role_for_deck_var(deck_var, self.id)
return mc.distributions.normal_like(
matrix[self.id][role_id],
1.0,
100)
self.all_vars.append(knows)
obs = mc.Bernoulli(
"player_knows_self_constraint_%d" % self.id,
knows,
value=1.0,
observed=True)
self.all_vars.append(obs)
# Convenience vars for trust
self.side_belief = []
def side_belief(player_id, role_vec):
out = 0.0
for i, role in enumerate(role_vec):
if self.game.role_id_is_good(i):
out += role
out = out / len(role_vec)
return out
for i in range(self.game.n_players):
is_good = mc.Deterministic(eval=functools.partial(side_belief, i),
name="player%d_trust_%d" % (self.id, i),
parents={"role_vec": self.matrix[i]},
doc="Does player trust %d?" % i,
dtype=float,
trace=True,
plot=False)
self.side_belief.append(is_good)
self.all_vars.append(is_good)
def get_good_belief_for(self, player_id):
return self.side_belief[player_id]
def get_role_belief_for(self, player_id, role_id):
return self.matrix[player_id][role_id]
@ -172,10 +133,15 @@ class DeceptionGame(object):
plot=False)
self.player_side_vars.append(side)
self.players.append(Player(x, self, side, role))
#self.players.append(Player(x, self))
for x in range(50000):
self.deck_var.random()
self.lady_will_duck = mc.Bernoulli("lady_will_duck", 0.5)
self.team_duck = [None] * 5
self.team_duck[0] = mc.Bernoulli("team_duck_1", 0.8)
self.team_duck[1] = mc.Bernoulli("team_duck_2", 0.6)
self.team_duck[2] = mc.Bernoulli("team_duck_3", 0.4)
self.team_duck[3] = mc.Bernoulli("team_duck_4", 0.2)
self.team_duck[4] = mc.Bernoulli("team_duck_5", 0.0)
self.observations = []
self.tid = 0
@ -186,29 +152,54 @@ class DeceptionGame(object):
def role_id_is_good(self, role_id):
return self.role_side[role_id]
def add_known_side(self, player_id, is_good):
transaction = []
def player_good_for_deck_var(self, index, player):
return self.all_permutations[index][player][1]
def player_is_good(side_var):
if side_var == is_good:
return 1.0
def player_role_for_deck_var(self, index, player):
return self.get_role_id_for(self.all_permutations[index][player][0])
def player_sees_player_and_claims(self, player_view, player_give, claim):
transaction = []
total_len = len(self.all_permutations)
for i in range(len(self.all_permutations)):
self.deck_var.value = (5119 * i) % total_len
try:
@mc.potential
def claims(deck_var=self.deck_var, will_duck=self.lady_will_duck):
if self.player_good_for_deck_var(deck_var, player_view) or will_duck:
if self.player_good_for_deck_var(deck_var, player_give) == claim:
return 0.0
else:
return -numpy.inf
else:
if self.player_good_for_deck_var(deck_var, player_give) == claim:
return -numpy.inf
else:
return 0.0
det = mc.Deterministic(
eval=player_is_good,
name="player_seen_det_tid%d" % self.tid,
parents={"side_var": self.player_side_vars[player_id]},
doc="Det TID%d" % self.tid,
dtype=float,
trace=False,
plot=False)
return -numpy.inf
except mc.ZeroProbability:
continue
transaction.append(det)
transaction.append(claims)
self.observations.append(transaction)
self.tid += 1
def add_known_side(self, player_id, is_good):
transaction = []
total_len = len(self.all_permutations)
for i in range(len(self.all_permutations)):
self.deck_var.value = (5119 * i) % total_len
try:
@mc.potential
def obs(deck_var=self.deck_var):
x = float(self.player_good_for_deck_var(deck_var, player_id)) - \
float(is_good)
return mc.distributions.normal_like(x, 0.0, 10000)
except mc.ZeroProbability:
continue
break
obs = mc.Degenerate("player_seen_tid%d" % self.tid,
det,
value=1.0,
observed=True)
transaction.append(obs)
self.observations.append(transaction)
self.tid += 1
@ -216,62 +207,88 @@ class DeceptionGame(object):
def add_known_role(self, player_id, role_str):
transaction = []
known_role_id = self.get_role_id_for(role_str)
total_len = len(self.all_permutations)
for i in range(len(self.all_permutations)):
self.deck_var.value = (5119 * i) % total_len
try:
@mc.potential
def role(deck_var=self.deck_var):
x = self.player_role_for_deck_var(deck_var, player_id) \
- known_role_id
return mc.distributions.normal_like(x, 0.0, 10000)
def bool_stoch_logp(value, in_val):
if value == in_val:
return -numpy.log(1)
else:
return -numpy.inf
except mc.ZeroProbability:
continue
break
def bool_stoch_rand(in_val):
return bool(numpy.round(random()))
def is_known_role(role_id):
if role_id == known_role_id:
return True
return False
det = mc.Deterministic(
eval=is_known_role,
name="player_seen_role_det_tid%d" % self.tid,
parents={"role_id": self.player_role_vars[player_id]},
doc="Det TID%d" % self.tid,
dtype=bool,
trace=True,
plot=False)
transaction.append(det)
obs = mc.Stochastic(
logp=bool_stoch_logp,
doc="Boolean stochastic observation",
name="player_seen_role_tid%d" % self.tid,
parents={"in_val": det},
random=bool_stoch_rand,
trace=True,
value=True,
dtype=bool,
observed=True,
cache_depth=2,
plot=False,
verbose=0)
#obs = mc.Uniform("player_seen_role_tid%d" % self.tid,
#0, det,
#value=1,
#observed=True)
transaction.append(obs)
transaction.append(role)
self.observations.append(transaction)
self.tid += 1
def eval(self, length=40000, burn=10000):
def build_team(self, team, votes, required_success):
transaction = []
for voter in range(self.n_players):
total_len = len(self.all_permutations)
for i in range(len(self.all_permutations)):
self.deck_var.value = (5119 * i) % total_len
try:
@mc.potential
def build_team(deck_var=self.deck_var):
voter_is_good = self.player_good_for_deck_var(deck_var, voter)
if voter_is_good:
return mc.distributions.normal_like(x - n_successes, 0.0, 1000)
else:
return mc.distributions.normal_like(x - required_success, len(team) -
team_votes.name = "voter_%d_tid%d" % (voter, self.tid)
except mc.ZeroProbability:
continue
break
transaction.append(team_votes)
self.observations.append(transaction)
self.tid += 1
def team_and_successes(self, team, n_successes, mandatory, r):
transaction = []
total_len = len(self.all_permutations)
for i in range(len(self.all_permutations)):
self.deck_var.value = (5119 * i) % total_len
try:
@mc.potential
def team_votes(deck_var=self.deck_var, team_duck=self.team_duck[r - 1]):
team_allegience = [self.player_good_for_deck_var(deck_var, x)
for x in team]
for i, al in enumerate(team_allegience):
if al is True:
continue
else:
if not mandatory and team_duck:
print "Ducking"
team_allegience[i] = True
x = sum([float(x) for x in team_allegience])
return mc.distributions.normal_like(x - n_successes, 0.0, 1000)
team_votes.name = "team_votes_tid%d" % self.tid
except mc.ZeroProbability:
continue
break
transaction.append(team_votes)
self.observations.append(transaction)
self.tid += 1
def eval(self, length=60000, burn=30):
mcmc = mc.MCMC(self._build_model_list())
mcmc.sample(length, burn)
self.model = mcmc
def eval_model_sans_players(self, length=40000, burn=500):
def eval_model_sans_players(self, length=40000, burn=0):
mcmc = mc.MCMC(self._build_restricted_model_list())
mcmc.sample(length, burn)
#mcmc.use_step_method(mc.DiscreteMetropolis, self.deck_var, proposal_distribution='Prior')
mcmc.sample(length, burn, tune_throughout=False)
def report(self):
if self.model is None:
@ -314,8 +331,11 @@ class DeceptionGame(object):
def _build_model_list(self):
out = []
out.append(self.deck_var)
out.append(self.lady_will_duck)
out.extend(self.player_side_vars[:])
out.extend(self.player_role_vars[:])
for duck in self.team_duck:
out.append(duck)
for player in self.players:
out.extend(player.all_vars[:])
flattened = [item for transaction in self.observations
@ -324,10 +344,13 @@ class DeceptionGame(object):
return list(set(out))
base_game = DeceptionGame(ResistanceGame(10))
base_game.eval_model_sans_players()
base_game.add_known_role(0, "G1")
base_game.add_known_side(1, False)
base_game = DeceptionGame(ResistanceGame(5))
#base_game.add_known_role(0, "G1")
base_game.build_team([0, 1, 2], [1, 0, 1, 1, 0], 1)
base_game.team_and_successes([0, 1, 2], 2, 1, False)
#base_game.team_and_successes([0, 1, 2], 2, 2, False)
#base_game.player_sees_player_and_claims(0, 1, False)
#base_game.add_known_side(1, False)
base_game.eval()
base_game.print_report()