cayley/graph/iterator/value_comparison_iterator.go
kortschak 274d9ef57e Rename Provenance -> Label
's/Provenance/Label/g' 's/provenance/label/g' with human vetting.
2014-07-29 08:44:39 +09:30

190 lines
4.5 KiB
Go

// Copyright 2014 The Cayley Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package iterator
// "Value Comparison" is a unary operator -- a filter across the values in the
// relevant subiterator.
//
// This is hugely useful for things like label, but value ranges in general
// come up from time to time. At *worst* we're as big as our underlying iterator.
// At best, we're the null iterator.
//
// This is ripe for backend-side optimization. If you can run a value iterator,
// from a sorted set -- some sort of value index, then go for it.
//
// In MQL terms, this is the [{"age>=": 21}] concept.
import (
"fmt"
"log"
"strconv"
"strings"
"github.com/google/cayley/graph"
)
type Operator int
const (
kCompareLT Operator = iota
kCompareLTE
kCompareGT
kCompareGTE
// Why no Equals? Because that's usually an AndIterator.
)
type Comparison struct {
Base
subIt graph.Iterator
op Operator
val interface{}
ts graph.TripleStore
}
func NewComparison(sub graph.Iterator, op Operator, val interface{}, ts graph.TripleStore) *Comparison {
var vc Comparison
BaseInit(&vc.Base)
vc.subIt = sub
vc.op = op
vc.val = val
vc.ts = ts
return &vc
}
// Here's the non-boilerplate part of the ValueComparison iterator. Given a value
// and our operator, determine whether or not we meet the requirement.
func (it *Comparison) doComparison(val graph.Value) bool {
//TODO(barakmich): Implement string comparison.
nodeStr := it.ts.NameOf(val)
switch cVal := it.val.(type) {
case int:
cInt := int64(cVal)
intVal, err := strconv.ParseInt(nodeStr, 10, 64)
if err != nil {
return false
}
return RunIntOp(intVal, it.op, cInt)
case int64:
intVal, err := strconv.ParseInt(nodeStr, 10, 64)
if err != nil {
return false
}
return RunIntOp(intVal, it.op, cVal)
default:
return true
}
}
func (it *Comparison) Close() {
it.subIt.Close()
}
func RunIntOp(a int64, op Operator, b int64) bool {
switch op {
case kCompareLT:
return a < b
case kCompareLTE:
return a <= b
case kCompareGT:
return a > b
case kCompareGTE:
return a >= b
default:
log.Fatal("Unknown operator type")
return false
}
}
func (it *Comparison) Reset() {
it.subIt.Reset()
}
func (it *Comparison) Clone() graph.Iterator {
out := NewComparison(it.subIt.Clone(), it.op, it.val, it.ts)
out.CopyTagsFrom(it)
return out
}
func (it *Comparison) Next() (graph.Value, bool) {
var val graph.Value
var ok bool
for {
val, ok = it.subIt.Next()
if !ok {
return nil, false
}
if it.doComparison(val) {
break
}
}
it.Last = val
return val, ok
}
func (it *Comparison) NextResult() bool {
for {
hasNext := it.subIt.NextResult()
if !hasNext {
return false
}
if it.doComparison(it.subIt.Result()) {
return true
}
}
it.Last = it.subIt.Result()
return true
}
func (it *Comparison) Check(val graph.Value) bool {
if !it.doComparison(val) {
return false
}
return it.subIt.Check(val)
}
// If we failed the check, then the subiterator should not contribute to the result
// set. Otherwise, go ahead and tag it.
func (it *Comparison) TagResults(dst map[string]graph.Value) {
it.Base.TagResults(dst)
it.subIt.TagResults(dst)
}
// Registers the value-comparison iterator.
func (it *Comparison) Type() graph.Type { return graph.Comparison }
// Prints the value-comparison and its subiterator.
func (it *Comparison) DebugString(indent int) string {
return fmt.Sprintf("%s(%s\n%s)",
strings.Repeat(" ", indent),
it.Type(), it.subIt.DebugString(indent+4))
}
// There's nothing to optimize, locally, for a value-comparison iterator.
// Replace the underlying iterator if need be.
// potentially replace it.
func (it *Comparison) Optimize() (graph.Iterator, bool) {
newSub, changed := it.subIt.Optimize()
if changed {
it.subIt.Close()
it.subIt = newSub
}
return it, false
}
// We're only as expensive as our subiterator.
// Again, optimized value comparison iterators should do better.
func (it *Comparison) Stats() graph.IteratorStats {
return it.subIt.Stats()
}