Remove uses of container/list
This commit is contained in:
parent
bc77744449
commit
bed8d3813a
11 changed files with 202 additions and 240 deletions
|
|
@ -16,7 +16,6 @@
|
|||
package graph
|
||||
|
||||
import (
|
||||
"container/list"
|
||||
"fmt"
|
||||
"strings"
|
||||
)
|
||||
|
|
@ -28,7 +27,7 @@ type AndIterator struct {
|
|||
internalIterators []Iterator
|
||||
itCount int
|
||||
primaryIt Iterator
|
||||
checkList *list.List
|
||||
checkList []Iterator
|
||||
}
|
||||
|
||||
// Creates a new And iterator.
|
||||
|
|
@ -62,14 +61,12 @@ func (it *AndIterator) Clone() Iterator {
|
|||
return and
|
||||
}
|
||||
|
||||
// Returns a list.List of the subiterators, in order (primary iterator first).
|
||||
func (it *AndIterator) GetSubIterators() *list.List {
|
||||
l := list.New()
|
||||
l.PushBack(it.primaryIt)
|
||||
for _, sub := range it.internalIterators {
|
||||
l.PushBack(sub)
|
||||
}
|
||||
return l
|
||||
// Returns a slice of the subiterators, in order (primary iterator first).
|
||||
func (it *AndIterator) GetSubIterators() []Iterator {
|
||||
iters := make([]Iterator, len(it.internalIterators)+1)
|
||||
iters[0] = it.primaryIt
|
||||
copy(iters[1:], it.internalIterators)
|
||||
return iters
|
||||
}
|
||||
|
||||
// Overrides BaseIterator TagResults, as it needs to add it's own results and
|
||||
|
|
@ -169,14 +166,14 @@ func (it *AndIterator) checkSubIts(val TSVal) bool {
|
|||
}
|
||||
|
||||
func (it *AndIterator) checkCheckList(val TSVal) bool {
|
||||
var isGood = true
|
||||
for e := it.checkList.Front(); e != nil; e = e.Next() {
|
||||
isGood = e.Value.(Iterator).Check(val)
|
||||
if !isGood {
|
||||
ok := true
|
||||
for _, c := range it.checkList {
|
||||
ok = c.Check(val)
|
||||
if !ok {
|
||||
break
|
||||
}
|
||||
}
|
||||
return CheckLogOut(it, val, isGood)
|
||||
return CheckLogOut(it, val, ok)
|
||||
}
|
||||
|
||||
// Check a value against the entire iterator, in order.
|
||||
|
|
|
|||
|
|
@ -14,6 +14,10 @@
|
|||
|
||||
package graph
|
||||
|
||||
import (
|
||||
"sort"
|
||||
)
|
||||
|
||||
// Perhaps the most tricky file in this entire module. Really a method on the
|
||||
// AndIterator, but important enough to deserve its own file.
|
||||
//
|
||||
|
|
@ -31,42 +35,38 @@ package graph
|
|||
//
|
||||
// In short, tread lightly.
|
||||
|
||||
import (
|
||||
"container/list"
|
||||
)
|
||||
|
||||
// Optimizes the AndIterator, by picking the most efficient way to Next() and
|
||||
// Check() its subiterators. For SQL fans, this is equivalent to JOIN.
|
||||
func (it *AndIterator) Optimize() (Iterator, bool) {
|
||||
// First, let's get the list of iterators, in order (first one is Next()ed,
|
||||
// First, let's get the slice of iterators, in order (first one is Next()ed,
|
||||
// the rest are Check()ed)
|
||||
oldItList := it.GetSubIterators()
|
||||
old := it.GetSubIterators()
|
||||
|
||||
// And call Optimize() on our subtree, replacing each one in the order we
|
||||
// found them. it_list is the newly optimized versions of these, and changed
|
||||
// is another list, of only the ones that have returned replacements and
|
||||
// changed.
|
||||
itList := optimizeSubIterators(oldItList)
|
||||
its := optimizeSubIterators(old)
|
||||
|
||||
// Close the replaced iterators (they ought to close themselves, but Close()
|
||||
// is idempotent, so this just protects against any machinations).
|
||||
closeIteratorList(oldItList, nil)
|
||||
closeIteratorList(old, nil)
|
||||
|
||||
// If we can find only one subiterator which is equivalent to this whole and,
|
||||
// we can replace the And...
|
||||
out := it.optimizeReplacement(itList)
|
||||
out := it.optimizeReplacement(its)
|
||||
if out != nil {
|
||||
// ...Move the tags to the replacement...
|
||||
moveTagsTo(out, it)
|
||||
// ...Close everyone except `out`, our replacement...
|
||||
closeIteratorList(itList, out)
|
||||
closeIteratorList(its, out)
|
||||
// ...And return it.
|
||||
return out, true
|
||||
}
|
||||
|
||||
// And now, without changing any of the iterators, we reorder them. it_list is
|
||||
// now a permutation of itself, but the contents are unchanged.
|
||||
itList = optimizeOrder(itList)
|
||||
its = optimizeOrder(its)
|
||||
|
||||
// Okay! At this point we have an optimized order.
|
||||
|
||||
|
|
@ -75,8 +75,8 @@ func (it *AndIterator) Optimize() (Iterator, bool) {
|
|||
newAnd := NewAndIterator()
|
||||
|
||||
// Add the subiterators in order.
|
||||
for e := itList.Front(); e != nil; e = e.Next() {
|
||||
newAnd.AddSubIterator(e.Value.(Iterator))
|
||||
for _, sub := range its {
|
||||
newAnd.AddSubIterator(sub)
|
||||
}
|
||||
|
||||
// Move the tags hanging on us (like any good replacement).
|
||||
|
|
@ -93,35 +93,34 @@ func (it *AndIterator) Optimize() (Iterator, bool) {
|
|||
|
||||
// Closes a list of iterators, except the one passed in `except`. Closes all
|
||||
// of the iterators in the list if `except` is nil.
|
||||
func closeIteratorList(l *list.List, except Iterator) {
|
||||
for e := l.Front(); e != nil; e = e.Next() {
|
||||
it := e.Value.(Iterator)
|
||||
func closeIteratorList(its []Iterator, except Iterator) {
|
||||
for _, it := range its {
|
||||
if it != except {
|
||||
e.Value.(Iterator).Close()
|
||||
it.Close()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Find if there is a single subiterator which is a valid replacement for this
|
||||
// AndIterator.
|
||||
func (_ *AndIterator) optimizeReplacement(itList *list.List) Iterator {
|
||||
func (_ *AndIterator) optimizeReplacement(its []Iterator) Iterator {
|
||||
// If we were created with no SubIterators, we're as good as Null.
|
||||
if itList.Len() == 0 {
|
||||
if len(its) == 0 {
|
||||
return &NullIterator{}
|
||||
}
|
||||
if itList.Len() == 1 {
|
||||
if len(its) == 1 {
|
||||
// When there's only one iterator, there's only one choice.
|
||||
return itList.Front().Value.(Iterator)
|
||||
return its[0]
|
||||
}
|
||||
// If any of our subiterators, post-optimization, are also Null, then
|
||||
// there's no point in continuing the branch, we will have no results
|
||||
// and we are null as well.
|
||||
if hasAnyNullIterators(itList) {
|
||||
if hasAnyNullIterators(its) {
|
||||
return &NullIterator{}
|
||||
}
|
||||
|
||||
// If we have one useful iterator, use that.
|
||||
it := hasOneUsefulIterator(itList)
|
||||
it := hasOneUsefulIterator(its)
|
||||
if it != nil {
|
||||
return it
|
||||
}
|
||||
|
|
@ -130,40 +129,40 @@ func (_ *AndIterator) optimizeReplacement(itList *list.List) Iterator {
|
|||
|
||||
// optimizeOrder(l) takes a list and returns a list, containing the same contents
|
||||
// but with a new ordering, however it wishes.
|
||||
func optimizeOrder(l *list.List) *list.List {
|
||||
out := list.New()
|
||||
var bestIt Iterator
|
||||
bestCost := int64(1 << 62)
|
||||
// bad contains iterators that can't be (efficiently) nexted, such as
|
||||
// "optional" or "not". Separate them out and tack them on at the end.
|
||||
bad := list.New()
|
||||
func optimizeOrder(its []Iterator) []Iterator {
|
||||
var (
|
||||
// bad contains iterators that can't be (efficiently) nexted, such as
|
||||
// "optional" or "not". Separate them out and tack them on at the end.
|
||||
out, bad []Iterator
|
||||
best Iterator
|
||||
bestCost = int64(1 << 62)
|
||||
)
|
||||
|
||||
// Find the iterator with the projected "best" total cost.
|
||||
// Total cost is defined as The Next()ed iterator's cost to Next() out
|
||||
// all of it's contents, and to Check() each of those against everyone
|
||||
// else.
|
||||
for e := l.Front(); e != nil; e = e.Next() {
|
||||
it := e.Value.(Iterator)
|
||||
for _, it := range its {
|
||||
if !it.Nextable() {
|
||||
bad.PushBack(it)
|
||||
bad = append(bad, it)
|
||||
continue
|
||||
}
|
||||
rootStats := e.Value.(Iterator).GetStats()
|
||||
projectedCost := rootStats.NextCost
|
||||
for f := l.Front(); f != nil; f = f.Next() {
|
||||
if !f.Value.(Iterator).Nextable() {
|
||||
rootStats := it.GetStats()
|
||||
cost := rootStats.NextCost
|
||||
for _, f := range its {
|
||||
if !f.Nextable() {
|
||||
continue
|
||||
}
|
||||
if f == e {
|
||||
if f == it {
|
||||
continue
|
||||
}
|
||||
stats := f.Value.(Iterator).GetStats()
|
||||
projectedCost += stats.CheckCost
|
||||
stats := f.GetStats()
|
||||
cost += stats.CheckCost
|
||||
}
|
||||
projectedCost = projectedCost * rootStats.Size
|
||||
if projectedCost < bestCost {
|
||||
bestIt = it
|
||||
bestCost = projectedCost
|
||||
cost *= rootStats.Size
|
||||
if cost < bestCost {
|
||||
best = it
|
||||
bestCost = cost
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -172,63 +171,52 @@ func optimizeOrder(l *list.List) *list.List {
|
|||
// useful (fail faster).
|
||||
|
||||
// Put the best iterator (the one we wish to Next()) at the front...
|
||||
out.PushBack(bestIt)
|
||||
// ...And push everyone else after...
|
||||
for e := l.Front(); e != nil; e = e.Next() {
|
||||
thisIt := e.Value.(Iterator)
|
||||
if !thisIt.Nextable() {
|
||||
out = append(out, best)
|
||||
|
||||
// ... push everyone else after...
|
||||
for _, it := range its {
|
||||
if !it.Nextable() {
|
||||
continue
|
||||
}
|
||||
if thisIt != bestIt {
|
||||
out.PushBack(thisIt)
|
||||
if it != best {
|
||||
out = append(out, it)
|
||||
}
|
||||
}
|
||||
// ...And finally, the difficult children on the end.
|
||||
out.PushBackList(bad)
|
||||
return out
|
||||
|
||||
// ...and finally, the difficult children on the end.
|
||||
return append(out, bad...)
|
||||
}
|
||||
|
||||
type byCost []Iterator
|
||||
|
||||
func (c byCost) Len() int { return len(c) }
|
||||
func (c byCost) Less(i, j int) bool { return c[i].GetStats().CheckCost < c[j].GetStats().CheckCost }
|
||||
func (c byCost) Swap(i, j int) { c[i], c[j] = c[j], c[i] }
|
||||
|
||||
// optimizeCheck(l) creates an alternate check list, containing the same contents
|
||||
// but with a new ordering, however it wishes.
|
||||
func (it *AndIterator) optimizeCheck() {
|
||||
subIts := it.GetSubIterators()
|
||||
out := list.New()
|
||||
|
||||
// Find the iterator with the lowest Check() cost, push it to the front, repeat.
|
||||
for subIts.Len() != 0 {
|
||||
var best *list.Element
|
||||
bestCost := int64(1 << 62)
|
||||
for e := subIts.Front(); e != nil; e = e.Next() {
|
||||
it := e.Value.(Iterator)
|
||||
rootStats := it.GetStats()
|
||||
projectedCost := rootStats.CheckCost
|
||||
if projectedCost < bestCost {
|
||||
best = e
|
||||
bestCost = projectedCost
|
||||
}
|
||||
}
|
||||
out.PushBack(best.Value)
|
||||
subIts.Remove(best)
|
||||
}
|
||||
|
||||
it.checkList = out
|
||||
// GetSubIterators allocates, so this is currently safe.
|
||||
// TODO(kortschak) Reuse it.checkList if possible.
|
||||
// This involves providing GetSubIterators with a slice to fill.
|
||||
// Generally this is a worthwhile thing to do in other places as well.
|
||||
it.checkList = it.GetSubIterators()
|
||||
sort.Sort(byCost(it.checkList))
|
||||
}
|
||||
|
||||
// If we're replacing ourselves by a single iterator, we need to grab the
|
||||
// result tags from the iterators that, while still valid and would hold
|
||||
// the same values as this and, are not going to stay.
|
||||
// getSubTags() returns a map of the tags for all the subiterators.
|
||||
func (it *AndIterator) getSubTags() map[string]bool {
|
||||
subs := it.GetSubIterators()
|
||||
tags := make(map[string]bool)
|
||||
for e := subs.Front(); e != nil; e = e.Next() {
|
||||
it := e.Value.(Iterator)
|
||||
for _, tag := range it.Tags() {
|
||||
tags[tag] = true
|
||||
func (it *AndIterator) getSubTags() map[string]struct{} {
|
||||
tags := make(map[string]struct{})
|
||||
for _, sub := range it.GetSubIterators() {
|
||||
for _, tag := range sub.Tags() {
|
||||
tags[tag] = struct{}{}
|
||||
}
|
||||
}
|
||||
for _, tag := range it.Tags() {
|
||||
tags[tag] = true
|
||||
tags[tag] = struct{}{}
|
||||
}
|
||||
return tags
|
||||
}
|
||||
|
|
@ -236,13 +224,13 @@ func (it *AndIterator) getSubTags() map[string]bool {
|
|||
// moveTagsTo() gets the tags for all of the src's subiterators and the
|
||||
// src itself, and moves them to dst.
|
||||
func moveTagsTo(dst Iterator, src *AndIterator) {
|
||||
tagmap := src.getSubTags()
|
||||
tags := src.getSubTags()
|
||||
for _, tag := range dst.Tags() {
|
||||
if tagmap[tag] {
|
||||
delete(tagmap, tag)
|
||||
if _, ok := tags[tag]; ok {
|
||||
delete(tags, tag)
|
||||
}
|
||||
}
|
||||
for k, _ := range tagmap {
|
||||
for k := range tags {
|
||||
dst.AddTag(k)
|
||||
}
|
||||
}
|
||||
|
|
@ -251,24 +239,22 @@ func moveTagsTo(dst Iterator, src *AndIterator) {
|
|||
// of them. It returns two lists -- the first contains the same list as l, where
|
||||
// any replacements are made by Optimize() and the second contains the originals
|
||||
// which were replaced.
|
||||
func optimizeSubIterators(l *list.List) *list.List {
|
||||
itList := list.New()
|
||||
for e := l.Front(); e != nil; e = e.Next() {
|
||||
it := e.Value.(Iterator)
|
||||
newIt, change := it.Optimize()
|
||||
if change {
|
||||
itList.PushBack(newIt)
|
||||
func optimizeSubIterators(its []Iterator) []Iterator {
|
||||
var optIts []Iterator
|
||||
for _, it := range its {
|
||||
o, changed := it.Optimize()
|
||||
if changed {
|
||||
optIts = append(optIts, o)
|
||||
} else {
|
||||
itList.PushBack(it.Clone())
|
||||
optIts = append(optIts, it.Clone())
|
||||
}
|
||||
}
|
||||
return itList
|
||||
return optIts
|
||||
}
|
||||
|
||||
// Check a list of iterators for any Null iterators.
|
||||
func hasAnyNullIterators(l *list.List) bool {
|
||||
for e := l.Front(); e != nil; e = e.Next() {
|
||||
it := e.Value.(Iterator)
|
||||
func hasAnyNullIterators(its []Iterator) bool {
|
||||
for _, it := range its {
|
||||
if it.Type() == "null" {
|
||||
return true
|
||||
}
|
||||
|
|
@ -280,11 +266,10 @@ func hasAnyNullIterators(l *list.List) bool {
|
|||
// nothing, and "all" which returns everything. Particularly, we want
|
||||
// to see if we're intersecting with a bunch of "all" iterators, and,
|
||||
// if we are, then we have only one useful iterator.
|
||||
func hasOneUsefulIterator(l *list.List) Iterator {
|
||||
func hasOneUsefulIterator(its []Iterator) Iterator {
|
||||
usefulCount := 0
|
||||
var usefulIt Iterator
|
||||
for e := l.Front(); e != nil; e = e.Next() {
|
||||
it := e.Value.(Iterator)
|
||||
for _, it := range its {
|
||||
switch it.Type() {
|
||||
case "null", "all":
|
||||
continue
|
||||
|
|
|
|||
|
|
@ -79,9 +79,8 @@ func TestReorderWithTag(t *testing.T) {
|
|||
}
|
||||
expectedTags := []string{"good", "slow"}
|
||||
tagsOut := make([]string, 0)
|
||||
l := newIt.GetSubIterators()
|
||||
for e := l.Front(); e != nil; e = e.Next() {
|
||||
for _, x := range e.Value.(Iterator).Tags() {
|
||||
for _, sub := range newIt.GetSubIterators() {
|
||||
for _, x := range sub.Tags() {
|
||||
tagsOut = append(tagsOut, x)
|
||||
}
|
||||
}
|
||||
|
|
|
|||
|
|
@ -34,7 +34,6 @@ package graph
|
|||
// Alternatively, can be seen as the dual of the LinksTo iterator.
|
||||
|
||||
import (
|
||||
"container/list"
|
||||
"fmt"
|
||||
"strings"
|
||||
|
||||
|
|
@ -63,11 +62,9 @@ func NewHasaIterator(ts TripleStore, subIt Iterator, dir string) *HasaIterator {
|
|||
return &hasa
|
||||
}
|
||||
|
||||
// Return our sole subiterator, in a list.List.
|
||||
func (it *HasaIterator) GetSubIterators() *list.List {
|
||||
l := list.New()
|
||||
l.PushBack(it.primaryIt)
|
||||
return l
|
||||
// Return our sole subiterator.
|
||||
func (it *HasaIterator) GetSubIterators() []Iterator {
|
||||
return []Iterator{it.primaryIt}
|
||||
}
|
||||
|
||||
func (it *HasaIterator) Reset() {
|
||||
|
|
|
|||
|
|
@ -18,7 +18,6 @@ package graph
|
|||
// iterators can "inherit" from to get default iterator functionality.
|
||||
|
||||
import (
|
||||
"container/list"
|
||||
"fmt"
|
||||
"strings"
|
||||
|
||||
|
|
@ -90,8 +89,9 @@ type Iterator interface {
|
|||
// around internally. if it chooses to replace it with a better iterator,
|
||||
// returns (the new iterator, true), if not, it returns (self, false).
|
||||
Optimize() (Iterator, bool)
|
||||
// Return a list of the subiterators for this iterator.
|
||||
GetSubIterators() *list.List
|
||||
|
||||
// Return a slice of the subiterators for this iterator.
|
||||
GetSubIterators() []Iterator
|
||||
|
||||
// Return a string representation of the iterator, indented by the given amount.
|
||||
DebugString(int) string
|
||||
|
|
@ -170,18 +170,18 @@ func (it *BaseIterator) CopyTagsFrom(other_it Iterator) {
|
|||
}
|
||||
|
||||
// Prints a silly debug string. Most classes override.
|
||||
func (n *BaseIterator) DebugString(indent int) string {
|
||||
func (it *BaseIterator) DebugString(indent int) string {
|
||||
return fmt.Sprintf("%s(base)", strings.Repeat(" ", indent))
|
||||
}
|
||||
|
||||
// Nothing in a base iterator.
|
||||
func (n *BaseIterator) Check(v TSVal) bool {
|
||||
func (it *BaseIterator) Check(v TSVal) bool {
|
||||
return false
|
||||
}
|
||||
|
||||
// Base iterators should never appear in a tree if they are, select against
|
||||
// them.
|
||||
func (n *BaseIterator) GetStats() *IteratorStats {
|
||||
func (it *BaseIterator) GetStats() *IteratorStats {
|
||||
return &IteratorStats{100000, 100000, 100000}
|
||||
}
|
||||
|
||||
|
|
@ -211,7 +211,7 @@ func (it *BaseIterator) Size() (int64, bool) {
|
|||
}
|
||||
|
||||
// No subiterators. Only those with subiterators need to do anything here.
|
||||
func (it *BaseIterator) GetSubIterators() *list.List {
|
||||
func (it *BaseIterator) GetSubIterators() []Iterator {
|
||||
return nil
|
||||
}
|
||||
|
||||
|
|
@ -231,7 +231,8 @@ func (it *BaseIterator) TagResults(out_map *map[string]TSVal) {
|
|||
}
|
||||
|
||||
// Nothing to clean up.
|
||||
//func (a *BaseIterator) Close() {}
|
||||
// func (it *BaseIterator) Close() {}
|
||||
|
||||
func (it *NullIterator) Close() {}
|
||||
|
||||
func (it *BaseIterator) Reset() {}
|
||||
|
|
|
|||
|
|
@ -28,21 +28,21 @@ func (ts *TripleStore) OptimizeIterator(it graph.Iterator) (graph.Iterator, bool
|
|||
}
|
||||
|
||||
func (ts *TripleStore) optimizeLinksTo(it *graph.LinksToIterator) (graph.Iterator, bool) {
|
||||
l := it.GetSubIterators()
|
||||
if l.Len() != 1 {
|
||||
subs := it.GetSubIterators()
|
||||
if len(subs) != 1 {
|
||||
return it, false
|
||||
}
|
||||
primaryIt := l.Front().Value.(graph.Iterator)
|
||||
if primaryIt.Type() == "fixed" {
|
||||
size, _ := primaryIt.Size()
|
||||
primary := subs[0]
|
||||
if primary.Type() == "fixed" {
|
||||
size, _ := primary.Size()
|
||||
if size == 1 {
|
||||
val, ok := primaryIt.Next()
|
||||
val, ok := primary.Next()
|
||||
if !ok {
|
||||
panic("Sizes lie")
|
||||
}
|
||||
newIt := ts.GetTripleIterator(it.Direction(), val)
|
||||
newIt.CopyTagsFrom(it)
|
||||
for _, tag := range primaryIt.Tags() {
|
||||
for _, tag := range primary.Tags() {
|
||||
newIt.AddFixedTag(tag, val)
|
||||
}
|
||||
it.Close()
|
||||
|
|
|
|||
|
|
@ -30,7 +30,6 @@ package graph
|
|||
// Can be seen as the dual of the HasA iterator.
|
||||
|
||||
import (
|
||||
"container/list"
|
||||
"fmt"
|
||||
"strings"
|
||||
)
|
||||
|
|
@ -58,120 +57,118 @@ func NewLinksToIterator(ts TripleStore, it Iterator, dir string) *LinksToIterato
|
|||
return <o
|
||||
}
|
||||
|
||||
func (l *LinksToIterator) Reset() {
|
||||
l.primaryIt.Reset()
|
||||
if l.nextIt != nil {
|
||||
l.nextIt.Close()
|
||||
func (it *LinksToIterator) Reset() {
|
||||
it.primaryIt.Reset()
|
||||
if it.nextIt != nil {
|
||||
it.nextIt.Close()
|
||||
}
|
||||
l.nextIt = &NullIterator{}
|
||||
it.nextIt = &NullIterator{}
|
||||
}
|
||||
|
||||
func (l *LinksToIterator) Clone() Iterator {
|
||||
out := NewLinksToIterator(l.ts, l.primaryIt.Clone(), l.direction)
|
||||
out.CopyTagsFrom(l)
|
||||
func (it *LinksToIterator) Clone() Iterator {
|
||||
out := NewLinksToIterator(it.ts, it.primaryIt.Clone(), it.direction)
|
||||
out.CopyTagsFrom(it)
|
||||
return out
|
||||
}
|
||||
|
||||
// Return the direction under consideration.
|
||||
func (l *LinksToIterator) Direction() string { return l.direction }
|
||||
func (it *LinksToIterator) Direction() string { return it.direction }
|
||||
|
||||
// Tag these results, and our subiterator's results.
|
||||
func (l *LinksToIterator) TagResults(out *map[string]TSVal) {
|
||||
l.BaseIterator.TagResults(out)
|
||||
l.primaryIt.TagResults(out)
|
||||
func (it *LinksToIterator) TagResults(out *map[string]TSVal) {
|
||||
it.BaseIterator.TagResults(out)
|
||||
it.primaryIt.TagResults(out)
|
||||
}
|
||||
|
||||
// DEPRECATED
|
||||
func (l *LinksToIterator) GetResultTree() *ResultTree {
|
||||
tree := NewResultTree(l.LastResult())
|
||||
tree.AddSubtree(l.primaryIt.GetResultTree())
|
||||
func (it *LinksToIterator) GetResultTree() *ResultTree {
|
||||
tree := NewResultTree(it.LastResult())
|
||||
tree.AddSubtree(it.primaryIt.GetResultTree())
|
||||
return tree
|
||||
}
|
||||
|
||||
// Print the iterator.
|
||||
func (l *LinksToIterator) DebugString(indent int) string {
|
||||
func (it *LinksToIterator) DebugString(indent int) string {
|
||||
return fmt.Sprintf("%s(%s %d direction:%s\n%s)",
|
||||
strings.Repeat(" ", indent),
|
||||
l.Type(), l.GetUid(), l.direction, l.primaryIt.DebugString(indent+4))
|
||||
it.Type(), it.GetUid(), it.direction, it.primaryIt.DebugString(indent+4))
|
||||
}
|
||||
|
||||
// If it checks in the right direction for the subiterator, it is a valid link
|
||||
// for the LinksTo.
|
||||
func (l *LinksToIterator) Check(val TSVal) bool {
|
||||
CheckLogIn(l, val)
|
||||
node := l.ts.GetTripleDirection(val, l.direction)
|
||||
if l.primaryIt.Check(node) {
|
||||
l.Last = val
|
||||
return CheckLogOut(l, val, true)
|
||||
func (it *LinksToIterator) Check(val TSVal) bool {
|
||||
CheckLogIn(it, val)
|
||||
node := it.ts.GetTripleDirection(val, it.direction)
|
||||
if it.primaryIt.Check(node) {
|
||||
it.Last = val
|
||||
return CheckLogOut(it, val, true)
|
||||
}
|
||||
return CheckLogOut(l, val, false)
|
||||
return CheckLogOut(it, val, false)
|
||||
}
|
||||
|
||||
// Return a list containing only our subiterator.
|
||||
func (lto *LinksToIterator) GetSubIterators() *list.List {
|
||||
l := list.New()
|
||||
l.PushBack(lto.primaryIt)
|
||||
return l
|
||||
func (it *LinksToIterator) GetSubIterators() []Iterator {
|
||||
return []Iterator{it.primaryIt}
|
||||
}
|
||||
|
||||
// Optimize the LinksTo, by replacing it if it can be.
|
||||
func (lto *LinksToIterator) Optimize() (Iterator, bool) {
|
||||
newPrimary, changed := lto.primaryIt.Optimize()
|
||||
func (it *LinksToIterator) Optimize() (Iterator, bool) {
|
||||
newPrimary, changed := it.primaryIt.Optimize()
|
||||
if changed {
|
||||
lto.primaryIt = newPrimary
|
||||
if lto.primaryIt.Type() == "null" {
|
||||
lto.nextIt.Close()
|
||||
return lto.primaryIt, true
|
||||
it.primaryIt = newPrimary
|
||||
if it.primaryIt.Type() == "null" {
|
||||
it.nextIt.Close()
|
||||
return it.primaryIt, true
|
||||
}
|
||||
}
|
||||
// Ask the TripleStore if we can be replaced. Often times, this is a great
|
||||
// optimization opportunity (there's a fixed iterator underneath us, for
|
||||
// example).
|
||||
newReplacement, hasOne := lto.ts.OptimizeIterator(lto)
|
||||
newReplacement, hasOne := it.ts.OptimizeIterator(it)
|
||||
if hasOne {
|
||||
lto.Close()
|
||||
it.Close()
|
||||
return newReplacement, true
|
||||
}
|
||||
return lto, false
|
||||
return it, false
|
||||
}
|
||||
|
||||
// Next()ing a LinksTo operates as described above.
|
||||
func (l *LinksToIterator) Next() (TSVal, bool) {
|
||||
NextLogIn(l)
|
||||
val, ok := l.nextIt.Next()
|
||||
func (it *LinksToIterator) Next() (TSVal, bool) {
|
||||
NextLogIn(it)
|
||||
val, ok := it.nextIt.Next()
|
||||
if !ok {
|
||||
// Subiterator is empty, get another one
|
||||
candidate, ok := l.primaryIt.Next()
|
||||
candidate, ok := it.primaryIt.Next()
|
||||
if !ok {
|
||||
// We're out of nodes in our subiterator, so we're done as well.
|
||||
return NextLogOut(l, 0, false)
|
||||
return NextLogOut(it, 0, false)
|
||||
}
|
||||
l.nextIt.Close()
|
||||
l.nextIt = l.ts.GetTripleIterator(l.direction, candidate)
|
||||
it.nextIt.Close()
|
||||
it.nextIt = it.ts.GetTripleIterator(it.direction, candidate)
|
||||
// Recurse -- return the first in the next set.
|
||||
return l.Next()
|
||||
return it.Next()
|
||||
}
|
||||
l.Last = val
|
||||
return NextLogOut(l, val, ok)
|
||||
it.Last = val
|
||||
return NextLogOut(it, val, ok)
|
||||
}
|
||||
|
||||
// Close our subiterators.
|
||||
func (l *LinksToIterator) Close() {
|
||||
l.nextIt.Close()
|
||||
l.primaryIt.Close()
|
||||
func (it *LinksToIterator) Close() {
|
||||
it.nextIt.Close()
|
||||
it.primaryIt.Close()
|
||||
}
|
||||
|
||||
// We won't ever have a new result, but our subiterators might.
|
||||
func (l *LinksToIterator) NextResult() bool {
|
||||
return l.primaryIt.NextResult()
|
||||
func (it *LinksToIterator) NextResult() bool {
|
||||
return it.primaryIt.NextResult()
|
||||
}
|
||||
|
||||
// Register the LinksTo.
|
||||
func (l *LinksToIterator) Type() string { return "linksto" }
|
||||
func (it *LinksToIterator) Type() string { return "linksto" }
|
||||
|
||||
// Return a guess as to how big or costly it is to next the iterator.
|
||||
func (l *LinksToIterator) GetStats() *IteratorStats {
|
||||
subitStats := l.primaryIt.GetStats()
|
||||
func (it *LinksToIterator) GetStats() *IteratorStats {
|
||||
subitStats := it.primaryIt.GetStats()
|
||||
// TODO(barakmich): These should really come from the triplestore itself
|
||||
fanoutFactor := int64(20)
|
||||
checkConstant := int64(1)
|
||||
|
|
|
|||
|
|
@ -28,21 +28,21 @@ func (ts *TripleStore) OptimizeIterator(it graph.Iterator) (graph.Iterator, bool
|
|||
}
|
||||
|
||||
func (ts *TripleStore) optimizeLinksTo(it *graph.LinksToIterator) (graph.Iterator, bool) {
|
||||
l := it.GetSubIterators()
|
||||
if l.Len() != 1 {
|
||||
subs := it.GetSubIterators()
|
||||
if len(subs) != 1 {
|
||||
return it, false
|
||||
}
|
||||
primaryIt := l.Front().Value.(graph.Iterator)
|
||||
if primaryIt.Type() == "fixed" {
|
||||
size, _ := primaryIt.Size()
|
||||
primary := subs[0]
|
||||
if primary.Type() == "fixed" {
|
||||
size, _ := primary.Size()
|
||||
if size == 1 {
|
||||
val, ok := primaryIt.Next()
|
||||
val, ok := primary.Next()
|
||||
if !ok {
|
||||
panic("Sizes lie")
|
||||
}
|
||||
newIt := ts.GetTripleIterator(it.Direction(), val)
|
||||
newIt.CopyTagsFrom(it)
|
||||
for _, tag := range primaryIt.Tags() {
|
||||
for _, tag := range primary.Tags() {
|
||||
newIt.AddFixedTag(tag, val)
|
||||
}
|
||||
return newIt, true
|
||||
|
|
|
|||
|
|
@ -28,21 +28,21 @@ func (ts *TripleStore) OptimizeIterator(it graph.Iterator) (graph.Iterator, bool
|
|||
}
|
||||
|
||||
func (ts *TripleStore) optimizeLinksTo(it *graph.LinksToIterator) (graph.Iterator, bool) {
|
||||
l := it.GetSubIterators()
|
||||
if l.Len() != 1 {
|
||||
subs := it.GetSubIterators()
|
||||
if len(subs) != 1 {
|
||||
return it, false
|
||||
}
|
||||
primaryIt := l.Front().Value.(graph.Iterator)
|
||||
if primaryIt.Type() == "fixed" {
|
||||
size, _ := primaryIt.Size()
|
||||
primary := subs[0]
|
||||
if primary.Type() == "fixed" {
|
||||
size, _ := primary.Size()
|
||||
if size == 1 {
|
||||
val, ok := primaryIt.Next()
|
||||
val, ok := primary.Next()
|
||||
if !ok {
|
||||
panic("Sizes lie")
|
||||
}
|
||||
newIt := ts.GetTripleIterator(it.Direction(), val)
|
||||
newIt.CopyTagsFrom(it)
|
||||
for _, tag := range primaryIt.Tags() {
|
||||
for _, tag := range primary.Tags() {
|
||||
newIt.AddFixedTag(tag, val)
|
||||
}
|
||||
it.Close()
|
||||
|
|
|
|||
|
|
@ -22,7 +22,6 @@ package graph
|
|||
// May return the same value twice -- once for each branch.
|
||||
|
||||
import (
|
||||
"container/list"
|
||||
"fmt"
|
||||
"strings"
|
||||
)
|
||||
|
|
@ -75,13 +74,9 @@ func (it *OrIterator) Clone() Iterator {
|
|||
return or
|
||||
}
|
||||
|
||||
// Returns a list.List of the subiterators, in order.
|
||||
func (it *OrIterator) GetSubIterators() *list.List {
|
||||
l := list.New()
|
||||
for _, sub := range it.internalIterators {
|
||||
l.PushBack(sub)
|
||||
}
|
||||
return l
|
||||
// Returns a list.List of the subiterators, in order. The returned slice must not be modified.
|
||||
func (it *OrIterator) GetSubIterators() []Iterator {
|
||||
return it.internalIterators
|
||||
}
|
||||
|
||||
// Overrides BaseIterator TagResults, as it needs to add it's own results and
|
||||
|
|
@ -236,17 +231,17 @@ func (it *OrIterator) Close() {
|
|||
}
|
||||
|
||||
func (it *OrIterator) Optimize() (Iterator, bool) {
|
||||
oldItList := it.GetSubIterators()
|
||||
itList := optimizeSubIterators(oldItList)
|
||||
old := it.GetSubIterators()
|
||||
optIts := optimizeSubIterators(old)
|
||||
// Close the replaced iterators (they ought to close themselves, but Close()
|
||||
// is idempotent, so this just protects against any machinations).
|
||||
closeIteratorList(oldItList, nil)
|
||||
closeIteratorList(old, nil)
|
||||
newOr := NewOrIterator()
|
||||
newOr.isShortCircuiting = it.isShortCircuiting
|
||||
|
||||
// Add the subiterators in order.
|
||||
for e := itList.Front(); e != nil; e = e.Next() {
|
||||
newOr.AddSubIterator(e.Value.(Iterator))
|
||||
for _, o := range optIts {
|
||||
newOr.AddSubIterator(o)
|
||||
}
|
||||
|
||||
// Move the tags hanging on us (like any good replacement).
|
||||
|
|
|
|||
|
|
@ -105,12 +105,7 @@ func (qs *queryShape) StealNode(left *Node, right *Node) {
|
|||
}
|
||||
|
||||
func (qs *queryShape) MakeNode(it Iterator) *Node {
|
||||
var n Node
|
||||
n.IsLinkNode = false
|
||||
n.IsFixed = false
|
||||
n.Id = qs.nodeId
|
||||
n.Tags = make([]string, 0)
|
||||
n.Values = make([]string, 0)
|
||||
n := Node{Id: qs.nodeId}
|
||||
for _, tag := range it.Tags() {
|
||||
n.Tags = append(n.Tags, tag)
|
||||
}
|
||||
|
|
@ -120,12 +115,10 @@ func (qs *queryShape) MakeNode(it Iterator) *Node {
|
|||
|
||||
switch it.Type() {
|
||||
case "and":
|
||||
list := it.GetSubIterators()
|
||||
for e := list.Front(); e != nil; e = e.Next() {
|
||||
subit := e.Value.(Iterator)
|
||||
for _, sub := range it.GetSubIterators() {
|
||||
qs.nodeId++
|
||||
newNode := qs.MakeNode(subit)
|
||||
if subit.Type() != "or" {
|
||||
newNode := qs.MakeNode(sub)
|
||||
if sub.Type() != "or" {
|
||||
qs.StealNode(&n, newNode)
|
||||
} else {
|
||||
qs.AddNode(newNode)
|
||||
|
|
@ -149,12 +142,10 @@ func (qs *queryShape) MakeNode(it Iterator) *Node {
|
|||
qs.AddNode(newNode)
|
||||
qs.RemoveHasa()
|
||||
case "or":
|
||||
list := it.GetSubIterators()
|
||||
for e := list.Front(); e != nil; e = e.Next() {
|
||||
subit := e.Value.(Iterator)
|
||||
for _, sub := range it.GetSubIterators() {
|
||||
qs.nodeId++
|
||||
newNode := qs.MakeNode(subit)
|
||||
if subit.Type() == "or" {
|
||||
newNode := qs.MakeNode(sub)
|
||||
if sub.Type() == "or" {
|
||||
qs.StealNode(&n, newNode)
|
||||
} else {
|
||||
qs.AddNode(newNode)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue