diff --git a/graph/all_iterator.go b/graph/all_iterator.go index 6068746..4be790e 100644 --- a/graph/all_iterator.go +++ b/graph/all_iterator.go @@ -45,70 +45,69 @@ func NewInt64AllIterator(min, max int64) *Int64AllIterator { } // Start back at the beginning -func (a *Int64AllIterator) Reset() { - a.at = a.min +func (it *Int64AllIterator) Reset() { + it.at = it.min } -func (a *Int64AllIterator) Close() { -} +func (it *Int64AllIterator) Close() {} -func (a *Int64AllIterator) Clone() Iterator { - out := NewInt64AllIterator(a.min, a.max) - out.CopyTagsFrom(a) +func (it *Int64AllIterator) Clone() Iterator { + out := NewInt64AllIterator(it.min, it.max) + out.CopyTagsFrom(it) return out } // Prints the All iterator as just an "all". -func (a *Int64AllIterator) DebugString(indent int) string { - return fmt.Sprintf("%s(%s)", strings.Repeat(" ", indent), a.Type()) +func (it *Int64AllIterator) DebugString(indent int) string { + return fmt.Sprintf("%s(%s)", strings.Repeat(" ", indent), it.Type()) } // Next() on an Int64 all iterator is a simple incrementing counter. // Return the next integer, and mark it as the result. -func (a *Int64AllIterator) Next() (TSVal, bool) { - NextLogIn(a) - if a.at == -1 { - return NextLogOut(a, nil, false) +func (it *Int64AllIterator) Next() (TSVal, bool) { + NextLogIn(it) + if it.at == -1 { + return NextLogOut(it, nil, false) } - val := a.at - a.at = a.at + 1 - if a.at > a.max { - a.at = -1 + val := it.at + it.at = it.at + 1 + if it.at > it.max { + it.at = -1 } - a.Last = val - return NextLogOut(a, val, true) + it.Last = val + return NextLogOut(it, val, true) } // The number of elements in an Int64AllIterator is the size of the range. // The size is exact. -func (a *Int64AllIterator) Size() (int64, bool) { - Size := ((a.max - a.min) + 1) +func (it *Int64AllIterator) Size() (int64, bool) { + Size := ((it.max - it.min) + 1) return Size, true } // Check() for an Int64AllIterator is merely seeing if the passed value is // withing the range, assuming the value is an int64. -func (a *Int64AllIterator) Check(tsv TSVal) bool { - CheckLogIn(a, tsv) +func (it *Int64AllIterator) Check(tsv TSVal) bool { + CheckLogIn(it, tsv) v := tsv.(int64) - if a.min <= v && v <= a.max { - a.Last = v - return CheckLogOut(a, v, true) + if it.min <= v && v <= it.max { + it.Last = v + return CheckLogOut(it, v, true) } - return CheckLogOut(a, v, false) + return CheckLogOut(it, v, false) } // The type of this iterator is an "all". This is important, as it puts it in // the class of "all iterators. -func (a *Int64AllIterator) Type() string { return "all" } +func (it *Int64AllIterator) Type() string { return "all" } // There's nothing to optimize about this little iterator. -func (a *Int64AllIterator) Optimize() (Iterator, bool) { return a, false } +func (it *Int64AllIterator) Optimize() (Iterator, bool) { return it, false } // Stats for an Int64AllIterator are simple. Super cheap to do any operation, // and as big as the range. -func (a *Int64AllIterator) GetStats() *IteratorStats { - s, _ := a.Size() +func (it *Int64AllIterator) GetStats() *IteratorStats { + s, _ := it.Size() return &IteratorStats{ CheckCost: 1, NextCost: 1, diff --git a/graph/and_iterator.go b/graph/and_iterator.go index a3458aa..f3f49e6 100644 --- a/graph/and_iterator.go +++ b/graph/and_iterator.go @@ -41,80 +41,80 @@ func NewAndIterator() *AndIterator { } // Reset all internal iterators -func (and *AndIterator) Reset() { - and.primaryIt.Reset() - for _, it := range and.internalIterators { - it.Reset() +func (it *AndIterator) Reset() { + it.primaryIt.Reset() + for _, sub := range it.internalIterators { + sub.Reset() } - and.checkList = nil + it.checkList = nil } -func (and *AndIterator) Clone() Iterator { - newAnd := NewAndIterator() - newAnd.AddSubIterator(and.primaryIt.Clone()) - newAnd.CopyTagsFrom(and) - for _, it := range and.internalIterators { - newAnd.AddSubIterator(it.Clone()) +func (it *AndIterator) Clone() Iterator { + and := NewAndIterator() + and.AddSubIterator(it.primaryIt.Clone()) + and.CopyTagsFrom(it) + for _, sub := range it.internalIterators { + and.AddSubIterator(sub.Clone()) } - if and.checkList != nil { - newAnd.optimizeCheck() + if it.checkList != nil { + and.optimizeCheck() } - return newAnd + return and } // Returns a list.List of the subiterators, in order (primary iterator first). -func (and *AndIterator) GetSubIterators() *list.List { +func (it *AndIterator) GetSubIterators() *list.List { l := list.New() - l.PushBack(and.primaryIt) - for _, it := range and.internalIterators { - l.PushBack(it) + l.PushBack(it.primaryIt) + for _, sub := range it.internalIterators { + l.PushBack(sub) } return l } // Overrides BaseIterator TagResults, as it needs to add it's own results and // recurse down it's subiterators. -func (and *AndIterator) TagResults(out *map[string]TSVal) { - and.BaseIterator.TagResults(out) - if and.primaryIt != nil { - and.primaryIt.TagResults(out) +func (it *AndIterator) TagResults(out *map[string]TSVal) { + it.BaseIterator.TagResults(out) + if it.primaryIt != nil { + it.primaryIt.TagResults(out) } - for _, it := range and.internalIterators { - it.TagResults(out) + for _, sub := range it.internalIterators { + sub.TagResults(out) } } // DEPRECATED Returns the ResultTree for this iterator, recurses to it's subiterators. -func (and *AndIterator) GetResultTree() *ResultTree { - tree := NewResultTree(and.LastResult()) - tree.AddSubtree(and.primaryIt.GetResultTree()) - for _, it := range and.internalIterators { - tree.AddSubtree(it.GetResultTree()) +func (it *AndIterator) GetResultTree() *ResultTree { + tree := NewResultTree(it.LastResult()) + tree.AddSubtree(it.primaryIt.GetResultTree()) + for _, sub := range it.internalIterators { + tree.AddSubtree(sub.GetResultTree()) } return tree } // Prints information about this iterator. -func (and *AndIterator) DebugString(indent int) string { +func (it *AndIterator) DebugString(indent int) string { var total string - for i, it := range and.internalIterators { + for i, sub := range it.internalIterators { total += strings.Repeat(" ", indent+2) - total += fmt.Sprintf("%d:\n%s\n", i, it.DebugString(indent+4)) + total += fmt.Sprintf("%d:\n%s\n", i, sub.DebugString(indent+4)) } var tags string - for _, k := range and.Tags() { + for _, k := range it.Tags() { tags += fmt.Sprintf("%s;", k) } spaces := strings.Repeat(" ", indent+2) return fmt.Sprintf("%s(%s %d\n%stags:%s\n%sprimary_it:\n%s\n%sother_its:\n%s)", strings.Repeat(" ", indent), - and.Type(), - and.GetUid(), + it.Type(), + it.GetUid(), spaces, tags, spaces, - and.primaryIt.DebugString(indent+4), + it.primaryIt.DebugString(indent+4), spaces, total) } @@ -125,43 +125,42 @@ func (and *AndIterator) DebugString(indent int) string { // important. Calling Optimize() is the way to change the order based on // subiterator statistics. Without Optimize(), the order added is the order // used. -func (and *AndIterator) AddSubIterator(sub Iterator) { - if and.itCount > 0 { - and.internalIterators = append(and.internalIterators, sub) - and.itCount++ +func (it *AndIterator) AddSubIterator(sub Iterator) { + if it.itCount > 0 { + it.internalIterators = append(it.internalIterators, sub) + it.itCount++ return } - and.primaryIt = sub - and.itCount++ + it.primaryIt = sub + it.itCount++ } // Returns the Next value from the And iterator. Because the And is the // intersection of its subiterators, it must choose one subiterator to produce a // candidate, and check this value against the subiterators. A productive choice // of primary iterator is therefore very important. -func (and *AndIterator) Next() (TSVal, bool) { - NextLogIn(and) +func (it *AndIterator) Next() (TSVal, bool) { + NextLogIn(it) var curr TSVal var exists bool for { - - curr, exists = and.primaryIt.Next() + curr, exists = it.primaryIt.Next() if !exists { - return NextLogOut(and, nil, false) + return NextLogOut(it, nil, false) } - if and.checkSubIts(curr) { - and.Last = curr - return NextLogOut(and, curr, true) + if it.checkSubIts(curr) { + it.Last = curr + return NextLogOut(it, curr, true) } } panic("Somehow broke out of Next() loop in AndIterator") } // Checks a value against the non-primary iterators, in order. -func (and *AndIterator) checkSubIts(val TSVal) bool { +func (it *AndIterator) checkSubIts(val TSVal) bool { var subIsGood = true - for _, it := range and.internalIterators { - subIsGood = it.Check(val) + for _, sub := range it.internalIterators { + subIsGood = sub.Check(val) if !subIsGood { break } @@ -169,43 +168,43 @@ func (and *AndIterator) checkSubIts(val TSVal) bool { return subIsGood } -func (and *AndIterator) checkCheckList(val TSVal) bool { +func (it *AndIterator) checkCheckList(val TSVal) bool { var isGood = true - for e := and.checkList.Front(); e != nil; e = e.Next() { + for e := it.checkList.Front(); e != nil; e = e.Next() { isGood = e.Value.(Iterator).Check(val) if !isGood { break } } - return CheckLogOut(and, val, isGood) + return CheckLogOut(it, val, isGood) } // Check a value against the entire iterator, in order. -func (and *AndIterator) Check(val TSVal) bool { - CheckLogIn(and, val) - if and.checkList != nil { - return and.checkCheckList(val) +func (it *AndIterator) Check(val TSVal) bool { + CheckLogIn(it, val) + if it.checkList != nil { + return it.checkCheckList(val) } - mainGood := and.primaryIt.Check(val) + mainGood := it.primaryIt.Check(val) if !mainGood { - return CheckLogOut(and, val, false) + return CheckLogOut(it, val, false) } - othersGood := and.checkSubIts(val) + othersGood := it.checkSubIts(val) if !othersGood { - return CheckLogOut(and, val, false) + return CheckLogOut(it, val, false) } - and.Last = val - return CheckLogOut(and, val, true) + it.Last = val + return CheckLogOut(it, val, true) } // Returns the approximate size of the And iterator. Because we're dealing // with an intersection, we know that the largest we can be is the size of the // smallest iterator. This is the heuristic we shall follow. Better heuristics // welcome. -func (and *AndIterator) Size() (int64, bool) { - val, b := and.primaryIt.Size() - for _, it := range and.internalIterators { - newval, newb := it.Size() +func (it *AndIterator) Size() (int64, bool) { + val, b := it.primaryIt.Size() + for _, sub := range it.internalIterators { + newval, newb := sub.Size() if val > newval { val = newval } @@ -217,12 +216,12 @@ func (and *AndIterator) Size() (int64, bool) { // An And has no NextResult of its own -- that is, there are no other values // which satisfy our previous result that are not the result itself. Our // subiterators might, however, so just pass the call recursively. -func (and *AndIterator) NextResult() bool { - if and.primaryIt.NextResult() { +func (it *AndIterator) NextResult() bool { + if it.primaryIt.NextResult() { return true } - for _, it := range and.internalIterators { - if it.NextResult() { + for _, sub := range it.internalIterators { + if sub.NextResult() { return true } } @@ -230,19 +229,18 @@ func (and *AndIterator) NextResult() bool { } // Perform and-specific cleanup, of which there currently is none. -func (and *AndIterator) cleanUp() { -} +func (it *AndIterator) cleanUp() {} // Close this iterator, and, by extension, close the subiterators. // Close should be idempotent, and it follows that if it's subiterators // follow this contract, the And follows the contract. -func (and *AndIterator) Close() { - and.cleanUp() - and.primaryIt.Close() - for _, it := range and.internalIterators { - it.Close() +func (it *AndIterator) Close() { + it.cleanUp() + it.primaryIt.Close() + for _, sub := range it.internalIterators { + sub.Close() } } // Register this as an "and" iterator. -func (and *AndIterator) Type() string { return "and" } +func (it *AndIterator) Type() string { return "and" } diff --git a/graph/and_iterator_optimize.go b/graph/and_iterator_optimize.go index 950d681..f7e5141 100644 --- a/graph/and_iterator_optimize.go +++ b/graph/and_iterator_optimize.go @@ -37,10 +37,10 @@ import ( // Optimizes the AndIterator, by picking the most efficient way to Next() and // Check() its subiterators. For SQL fans, this is equivalent to JOIN. -func (and *AndIterator) Optimize() (Iterator, bool) { +func (it *AndIterator) Optimize() (Iterator, bool) { // First, let's get the list of iterators, in order (first one is Next()ed, // the rest are Check()ed) - oldItList := and.GetSubIterators() + oldItList := it.GetSubIterators() // And call Optimize() on our subtree, replacing each one in the order we // found them. it_list is the newly optimized versions of these, and changed @@ -54,10 +54,10 @@ func (and *AndIterator) Optimize() (Iterator, bool) { // If we can find only one subiterator which is equivalent to this whole and, // we can replace the And... - out := and.optimizeReplacement(itList) + out := it.optimizeReplacement(itList) if out != nil { // ...Move the tags to the replacement... - moveTagsTo(out, and) + moveTagsTo(out, it) // ...Close everyone except `out`, our replacement... closeIteratorList(itList, out) // ...And return it. @@ -80,14 +80,14 @@ func (and *AndIterator) Optimize() (Iterator, bool) { } // Move the tags hanging on us (like any good replacement). - newAnd.CopyTagsFrom(and) + newAnd.CopyTagsFrom(it) newAnd.optimizeCheck() // And close ourselves but not our subiterators -- some may still be alive in // the new And (they were unchanged upon calling Optimize() on them, at the // start). - and.cleanUp() + it.cleanUp() return newAnd, true } @@ -104,7 +104,7 @@ func closeIteratorList(l *list.List, except Iterator) { // Find if there is a single subiterator which is a valid replacement for this // AndIterator. -func (and *AndIterator) optimizeReplacement(itList *list.List) Iterator { +func (_ *AndIterator) optimizeReplacement(itList *list.List) Iterator { // If we were created with no SubIterators, we're as good as Null. if itList.Len() == 0 { return &NullIterator{} @@ -190,8 +190,8 @@ func optimizeOrder(l *list.List) *list.List { // optimizeCheck(l) creates an alternate check list, containing the same contents // but with a new ordering, however it wishes. -func (and *AndIterator) optimizeCheck() { - subIts := and.GetSubIterators() +func (it *AndIterator) optimizeCheck() { + subIts := it.GetSubIterators() out := list.New() // Find the iterator with the lowest Check() cost, push it to the front, repeat. @@ -211,15 +211,15 @@ func (and *AndIterator) optimizeCheck() { subIts.Remove(best) } - and.checkList = out + it.checkList = out } // If we're replacing ourselves by a single iterator, we need to grab the // result tags from the iterators that, while still valid and would hold // the same values as this and, are not going to stay. // getSubTags() returns a map of the tags for all the subiterators. -func (and *AndIterator) getSubTags() map[string]bool { - subs := and.GetSubIterators() +func (it *AndIterator) getSubTags() map[string]bool { + subs := it.GetSubIterators() tags := make(map[string]bool) for e := subs.Front(); e != nil; e = e.Next() { it := e.Value.(Iterator) @@ -227,23 +227,23 @@ func (and *AndIterator) getSubTags() map[string]bool { tags[tag] = true } } - for _, tag := range and.Tags() { + for _, tag := range it.Tags() { tags[tag] = true } return tags } -// moveTagsTo() gets the tags for all of the And's subiterators and the -// And itself, and moves them to `out`. -func moveTagsTo(out Iterator, and *AndIterator) { - tagmap := and.getSubTags() - for _, tag := range out.Tags() { +// moveTagsTo() gets the tags for all of the src's subiterators and the +// src itself, and moves them to dst. +func moveTagsTo(dst Iterator, src *AndIterator) { + tagmap := src.getSubTags() + for _, tag := range dst.Tags() { if tagmap[tag] { delete(tagmap, tag) } } for k, _ := range tagmap { - out.AddTag(k) + dst.AddTag(k) } } @@ -308,13 +308,13 @@ func hasOneUsefulIterator(l *list.List) Iterator { // and.GetStats() lives here in and-iterator-optimize.go because it may // in the future return different statistics based on how it is optimized. // For now, however, it's pretty static. -func (and *AndIterator) GetStats() *IteratorStats { - primaryStats := and.primaryIt.GetStats() +func (it *AndIterator) GetStats() *IteratorStats { + primaryStats := it.primaryIt.GetStats() CheckCost := primaryStats.CheckCost NextCost := primaryStats.NextCost Size := primaryStats.Size - for _, it := range and.internalIterators { - stats := it.GetStats() + for _, sub := range it.internalIterators { + stats := sub.GetStats() NextCost += stats.CheckCost CheckCost += stats.CheckCost if Size > stats.Size { diff --git a/graph/fixed_iterator.go b/graph/fixed_iterator.go index 7578611..3d9eeb4 100644 --- a/graph/fixed_iterator.go +++ b/graph/fixed_iterator.go @@ -60,98 +60,97 @@ func NewFixedIteratorWithCompare(compareFn Equality) *FixedIterator { return &it } -func (f *FixedIterator) Reset() { - f.lastIndex = 0 +func (it *FixedIterator) Reset() { + it.lastIndex = 0 } -func (f *FixedIterator) Close() { -} +func (it *FixedIterator) Close() {} -func (f *FixedIterator) Clone() Iterator { - out := NewFixedIteratorWithCompare(f.cmp) - for _, val := range f.values { +func (it *FixedIterator) Clone() Iterator { + out := NewFixedIteratorWithCompare(it.cmp) + for _, val := range it.values { out.AddValue(val) } - out.CopyTagsFrom(f) + out.CopyTagsFrom(it) return out } // Add a value to the iterator. The array now contains this value. // TODO(barakmich): This ought to be a set someday, disallowing repeated values. -func (f *FixedIterator) AddValue(v TSVal) { - f.values = append(f.values, v) +func (it *FixedIterator) AddValue(v TSVal) { + it.values = append(it.values, v) } // Print some information about the iterator. -func (f *FixedIterator) DebugString(indent int) string { +func (it *FixedIterator) DebugString(indent int) string { value := "" - if len(f.values) > 0 { - value = fmt.Sprint(f.values[0]) + if len(it.values) > 0 { + value = fmt.Sprint(it.values[0]) } return fmt.Sprintf("%s(%s tags: %s Size: %d id0: %d)", strings.Repeat(" ", indent), - f.Type(), - f.FixedTags(), - len(f.values), + it.Type(), + it.FixedTags(), + len(it.values), value, ) } // Register this iterator as a Fixed iterator. -func (f *FixedIterator) Type() string { +func (it *FixedIterator) Type() string { return "fixed" } // Check if the passed value is equal to one of the values stored in the iterator. -func (f *FixedIterator) Check(v TSVal) bool { +func (it *FixedIterator) Check(v TSVal) bool { // Could be optimized by keeping it sorted or using a better datastructure. // However, for fixed iterators, which are by definition kind of tiny, this // isn't a big issue. - CheckLogIn(f, v) - for _, x := range f.values { - if f.cmp(x, v) { - f.Last = x - return CheckLogOut(f, v, true) + CheckLogIn(it, v) + for _, x := range it.values { + if it.cmp(x, v) { + it.Last = x + return CheckLogOut(it, v, true) } } - return CheckLogOut(f, v, false) + return CheckLogOut(it, v, false) } // Return the next stored value from the iterator. -func (f *FixedIterator) Next() (TSVal, bool) { - NextLogIn(f) - if f.lastIndex == len(f.values) { - return NextLogOut(f, nil, false) +func (it *FixedIterator) Next() (TSVal, bool) { + NextLogIn(it) + if it.lastIndex == len(it.values) { + return NextLogOut(it, nil, false) } - out := f.values[f.lastIndex] - f.Last = out - f.lastIndex++ - return NextLogOut(f, out, true) + out := it.values[it.lastIndex] + it.Last = out + it.lastIndex++ + return NextLogOut(it, out, true) } // Optimize() for a Fixed iterator is simple. Returns a Null iterator if it's empty // (so that other iterators upstream can treat this as null) or there is no // optimization. -func (f *FixedIterator) Optimize() (Iterator, bool) { +func (it *FixedIterator) Optimize() (Iterator, bool) { - if len(f.values) == 1 && f.values[0] == nil { + if len(it.values) == 1 && it.values[0] == nil { return &NullIterator{}, true } - return f, false + return it, false } // Size is the number of values stored. -func (f *FixedIterator) Size() (int64, bool) { - return int64(len(f.values)), true +func (it *FixedIterator) Size() (int64, bool) { + return int64(len(it.values)), true } // As we right now have to scan the entire list, Next and Check are linear with the // size. However, a better data structure could remove these limits. -func (a *FixedIterator) GetStats() *IteratorStats { +func (it *FixedIterator) GetStats() *IteratorStats { return &IteratorStats{ - CheckCost: int64(len(a.values)), - NextCost: int64(len(a.values)), - Size: int64(len(a.values)), + CheckCost: int64(len(it.values)), + NextCost: int64(len(it.values)), + Size: int64(len(it.values)), } } diff --git a/graph/hasa_iterator.go b/graph/hasa_iterator.go index 362b96d..b29f587 100644 --- a/graph/hasa_iterator.go +++ b/graph/hasa_iterator.go @@ -36,8 +36,9 @@ package graph import ( "container/list" "fmt" - "github.com/barakmich/glog" "strings" + + "github.com/barakmich/glog" ) // A HasaIterator consists of a reference back to the TripleStore that it references, @@ -63,94 +64,93 @@ func NewHasaIterator(ts TripleStore, subIt Iterator, dir string) *HasaIterator { } // Return our sole subiterator, in a list.List. -func (h *HasaIterator) GetSubIterators() *list.List { +func (it *HasaIterator) GetSubIterators() *list.List { l := list.New() - l.PushBack(h.primaryIt) + l.PushBack(it.primaryIt) return l } -func (h *HasaIterator) Reset() { - h.primaryIt.Reset() - if h.resultIt != nil { - h.resultIt.Close() +func (it *HasaIterator) Reset() { + it.primaryIt.Reset() + if it.resultIt != nil { + it.resultIt.Close() } } -func (h *HasaIterator) Clone() Iterator { - out := NewHasaIterator(h.ts, h.primaryIt.Clone(), h.direction) - out.CopyTagsFrom(h) +func (it *HasaIterator) Clone() Iterator { + out := NewHasaIterator(it.ts, it.primaryIt.Clone(), it.direction) + out.CopyTagsFrom(it) return out } // Direction accessor. -func (h *HasaIterator) Direction() string { return h.direction } +func (it *HasaIterator) Direction() string { return it.direction } // Pass the Optimize() call along to the subiterator. If it becomes Null, // then the HasA becomes Null (there are no triples that have any directions). -func (h *HasaIterator) Optimize() (Iterator, bool) { - - newPrimary, changed := h.primaryIt.Optimize() +func (it *HasaIterator) Optimize() (Iterator, bool) { + newPrimary, changed := it.primaryIt.Optimize() if changed { - h.primaryIt = newPrimary - if h.primaryIt.Type() == "null" { - return h.primaryIt, true + it.primaryIt = newPrimary + if it.primaryIt.Type() == "null" { + return it.primaryIt, true } } - return h, false + return it, false } // Pass the TagResults down the chain. -func (h *HasaIterator) TagResults(out *map[string]TSVal) { - h.BaseIterator.TagResults(out) - h.primaryIt.TagResults(out) +func (it *HasaIterator) TagResults(out *map[string]TSVal) { + it.BaseIterator.TagResults(out) + it.primaryIt.TagResults(out) } // DEPRECATED Return results in a ResultTree. -func (h *HasaIterator) GetResultTree() *ResultTree { - tree := NewResultTree(h.LastResult()) - tree.AddSubtree(h.primaryIt.GetResultTree()) +func (it *HasaIterator) GetResultTree() *ResultTree { + tree := NewResultTree(it.LastResult()) + tree.AddSubtree(it.primaryIt.GetResultTree()) return tree } // Print some information about this iterator. -func (h *HasaIterator) DebugString(indent int) string { +func (it *HasaIterator) DebugString(indent int) string { var tags string - for _, k := range h.Tags() { + for _, k := range it.Tags() { tags += fmt.Sprintf("%s;", k) } - return fmt.Sprintf("%s(%s %d tags:%s direction:%s\n%s)", strings.Repeat(" ", indent), h.Type(), h.GetUid(), tags, h.direction, h.primaryIt.DebugString(indent+4)) + return fmt.Sprintf("%s(%s %d tags:%s direction:%s\n%s)", strings.Repeat(" ", indent), it.Type(), it.GetUid(), tags, it.direction, it.primaryIt.DebugString(indent+4)) } // Check a value against our internal iterator. In order to do this, we must first open a new // iterator of "triples that have `val` in our direction", given to us by the triple store, // and then Next() values out of that iterator and Check() them against our subiterator. -func (h *HasaIterator) Check(val TSVal) bool { - CheckLogIn(h, val) +func (it *HasaIterator) Check(val TSVal) bool { + CheckLogIn(it, val) if glog.V(4) { - glog.V(4).Infoln("Id is", h.ts.GetNameFor(val)) + glog.V(4).Infoln("Id is", it.ts.GetNameFor(val)) } // TODO(barakmich): Optimize this - if h.resultIt != nil { - h.resultIt.Close() + if it.resultIt != nil { + it.resultIt.Close() } - h.resultIt = h.ts.GetTripleIterator(h.direction, val) - return CheckLogOut(h, val, h.GetCheckResult()) + it.resultIt = it.ts.GetTripleIterator(it.direction, val) + return CheckLogOut(it, val, it.GetCheckResult()) } // GetCheckResult() is shared code between Check() and GetNextResult() -- calls next on the // result iterator (a triple iterator based on the last checked value) and returns true if // another match is made. -func (h *HasaIterator) GetCheckResult() bool { +func (it *HasaIterator) GetCheckResult() bool { for { - linkVal, ok := h.resultIt.Next() + linkVal, ok := it.resultIt.Next() if !ok { break } if glog.V(4) { - glog.V(4).Infoln("Triple is", h.ts.GetTriple(linkVal).ToString()) + glog.V(4).Infoln("Triple is", it.ts.GetTriple(linkVal).ToString()) } - if h.primaryIt.Check(linkVal) { - h.Last = h.ts.GetTripleDirection(linkVal, h.direction) + if it.primaryIt.Check(linkVal) { + it.Last = it.ts.GetTripleDirection(linkVal, it.direction) return true } } @@ -158,37 +158,37 @@ func (h *HasaIterator) GetCheckResult() bool { } // Get the next result that matches this branch. -func (h *HasaIterator) NextResult() bool { +func (it *HasaIterator) NextResult() bool { // Order here is important. If the subiterator has a NextResult, then we // need do nothing -- there is a next result, and we shouldn't move forward. // However, we then need to get the next result from our last Check(). // // The upshot is, the end of NextResult() bubbles up from the bottom of the // iterator tree up, and we need to respect that. - if h.primaryIt.NextResult() { + if it.primaryIt.NextResult() { return true } - return h.GetCheckResult() + return it.GetCheckResult() } // Get the next result from this iterator. This is simpler than Check. We have a // subiterator we can get a value from, and we can take that resultant triple, // pull our direction out of it, and return that. -func (h *HasaIterator) Next() (TSVal, bool) { - NextLogIn(h) - if h.resultIt != nil { - h.resultIt.Close() +func (it *HasaIterator) Next() (TSVal, bool) { + NextLogIn(it) + if it.resultIt != nil { + it.resultIt.Close() } - h.resultIt = &NullIterator{} + it.resultIt = &NullIterator{} - tID, ok := h.primaryIt.Next() + tID, ok := it.primaryIt.Next() if !ok { - return NextLogOut(h, 0, false) + return NextLogOut(it, 0, false) } - name := h.ts.GetTriple(tID).Get(h.direction) - val := h.ts.GetIdFor(name) - h.Last = val - return NextLogOut(h, val, true) + name := it.ts.GetTriple(tID).Get(it.direction) + val := it.ts.GetIdFor(name) + it.Last = val + return NextLogOut(it, val, true) } // GetStats() returns the statistics on the HasA iterator. This is curious. Next @@ -197,8 +197,8 @@ func (h *HasaIterator) Next() (TSVal, bool) { // one sticks -- potentially expensive, depending on fanout. Size, however, is // potentially smaller. we know at worst it's the size of the subiterator, but // if there are many repeated values, it could be much smaller in totality. -func (h *HasaIterator) GetStats() *IteratorStats { - subitStats := h.primaryIt.GetStats() +func (it *HasaIterator) GetStats() *IteratorStats { + subitStats := it.primaryIt.GetStats() // TODO(barakmich): These should really come from the triplestore itself // and be optimized. faninFactor := int64(1) @@ -213,12 +213,12 @@ func (h *HasaIterator) GetStats() *IteratorStats { } // Close the subiterator, the result iterator (if any) and the HasA. -func (h *HasaIterator) Close() { - if h.resultIt != nil { - h.resultIt.Close() +func (it *HasaIterator) Close() { + if it.resultIt != nil { + it.resultIt.Close() } - h.primaryIt.Close() + it.primaryIt.Close() } // Register this iterator as a HasA. -func (h *HasaIterator) Type() string { return "hasa" } +func (it *HasaIterator) Type() string { return "hasa" } diff --git a/graph/iterator.go b/graph/iterator.go index 7aa25bc..26a02c0 100644 --- a/graph/iterator.go +++ b/graph/iterator.go @@ -20,8 +20,9 @@ package graph import ( "container/list" "fmt" - "github.com/barakmich/glog" "strings" + + "github.com/barakmich/glog" ) var iterator_n int = 0 @@ -120,50 +121,50 @@ type BaseIterator struct { } // Called by subclases. -func BaseIteratorInit(b *BaseIterator) { +func BaseIteratorInit(it *BaseIterator) { // Your basic iterator is nextable - b.nextable = true - b.uid = iterator_n + it.nextable = true + it.uid = iterator_n if glog.V(2) { iterator_n++ } } -func (b *BaseIterator) GetUid() int { - return b.uid +func (it *BaseIterator) GetUid() int { + return it.uid } // Adds a tag to the iterator. Most iterators don't need to override. -func (b *BaseIterator) AddTag(tag string) { - if b.tags == nil { - b.tags = make([]string, 0) +func (it *BaseIterator) AddTag(tag string) { + if it.tags == nil { + it.tags = make([]string, 0) } - b.tags = append(b.tags, tag) + it.tags = append(it.tags, tag) } -func (b *BaseIterator) AddFixedTag(tag string, value TSVal) { - if b.fixedTags == nil { - b.fixedTags = make(map[string]TSVal) +func (it *BaseIterator) AddFixedTag(tag string, value TSVal) { + if it.fixedTags == nil { + it.fixedTags = make(map[string]TSVal) } - b.fixedTags[tag] = value + it.fixedTags[tag] = value } // Returns the tags. -func (b *BaseIterator) Tags() []string { - return b.tags +func (it *BaseIterator) Tags() []string { + return it.tags } -func (b *BaseIterator) FixedTags() map[string]TSVal { - return b.fixedTags +func (it *BaseIterator) FixedTags() map[string]TSVal { + return it.fixedTags } -func (b *BaseIterator) CopyTagsFrom(other_it Iterator) { +func (it *BaseIterator) CopyTagsFrom(other_it Iterator) { for _, tag := range other_it.Tags() { - b.AddTag(tag) + it.AddTag(tag) } for k, v := range other_it.FixedTags() { - b.AddFixedTag(k, v) + it.AddFixedTag(k, v) } } @@ -185,55 +186,55 @@ func (n *BaseIterator) GetStats() *IteratorStats { } // DEPRECATED -func (b *BaseIterator) GetResultTree() *ResultTree { - tree := NewResultTree(b.LastResult()) +func (it *BaseIterator) GetResultTree() *ResultTree { + tree := NewResultTree(it.LastResult()) return tree } // Nothing in a base iterator. -func (n *BaseIterator) Next() (TSVal, bool) { +func (it *BaseIterator) Next() (TSVal, bool) { return nil, false } -func (n *BaseIterator) NextResult() bool { +func (it *BaseIterator) NextResult() bool { return false } // Returns the last result of an iterator. -func (n *BaseIterator) LastResult() TSVal { - return n.Last +func (it *BaseIterator) LastResult() TSVal { + return it.Last } // If you're empty and you know it, clap your hands. -func (n *BaseIterator) Size() (int64, bool) { +func (it *BaseIterator) Size() (int64, bool) { return 0, true } // No subiterators. Only those with subiterators need to do anything here. -func (n *BaseIterator) GetSubIterators() *list.List { +func (it *BaseIterator) GetSubIterators() *list.List { return nil } // Accessor -func (b *BaseIterator) Nextable() bool { return b.nextable } +func (it *BaseIterator) Nextable() bool { return it.nextable } // Fill the map based on the tags assigned to this iterator. Default // functionality works well for most iterators. -func (a *BaseIterator) TagResults(out_map *map[string]TSVal) { - for _, tag := range a.Tags() { - (*out_map)[tag] = a.LastResult() +func (it *BaseIterator) TagResults(out_map *map[string]TSVal) { + for _, tag := range it.Tags() { + (*out_map)[tag] = it.LastResult() } - for tag, value := range a.FixedTags() { + for tag, value := range it.FixedTags() { (*out_map)[tag] = value } } // Nothing to clean up. //func (a *BaseIterator) Close() {} -func (a *NullIterator) Close() {} +func (it *NullIterator) Close() {} -func (a *BaseIterator) Reset() {} +func (it *BaseIterator) Reset() {} // Here we define the simplest base iterator -- the Null iterator. It contains nothing. // It is the empty set. Often times, queries that contain one of these match nothing, @@ -244,26 +245,25 @@ type NullIterator struct { // Fairly useless New function. func NewNullIterator() *NullIterator { - var n NullIterator - return &n + return &NullIterator{} } -func (n *NullIterator) Clone() Iterator { return NewNullIterator() } +func (it *NullIterator) Clone() Iterator { return NewNullIterator() } // Name the null iterator. -func (n *NullIterator) Type() string { return "null" } +func (it *NullIterator) Type() string { return "null" } // A good iterator will close itself when it returns true. // Null has nothing it needs to do. -func (n *NullIterator) Optimize() (Iterator, bool) { return n, false } +func (it *NullIterator) Optimize() (Iterator, bool) { return it, false } // Print the null iterator. -func (n *NullIterator) DebugString(indent int) string { +func (it *NullIterator) DebugString(indent int) string { return strings.Repeat(" ", indent) + "(null)" } // A null iterator costs nothing. Use it! -func (n *NullIterator) GetStats() *IteratorStats { +func (it *NullIterator) GetStats() *IteratorStats { return &IteratorStats{0, 0, 0} } diff --git a/graph/optional_iterator.go b/graph/optional_iterator.go index 8050ba8..789529a 100644 --- a/graph/optional_iterator.go +++ b/graph/optional_iterator.go @@ -28,8 +28,9 @@ package graph import ( "fmt" - "github.com/barakmich/glog" "strings" + + "github.com/barakmich/glog" ) // An optional iterator has the subconstraint iterator we wish to be optional @@ -49,24 +50,24 @@ func NewOptionalIterator(it Iterator) *OptionalIterator { return &o } -func (o *OptionalIterator) Reset() { - o.subIt.Reset() - o.lastCheck = false +func (it *OptionalIterator) Reset() { + it.subIt.Reset() + it.lastCheck = false } -func (o *OptionalIterator) Close() { - o.subIt.Close() +func (it *OptionalIterator) Close() { + it.subIt.Close() } -func (o *OptionalIterator) Clone() Iterator { - out := NewOptionalIterator(o.subIt.Clone()) - out.CopyTagsFrom(o) +func (it *OptionalIterator) Clone() Iterator { + out := NewOptionalIterator(it.subIt.Clone()) + out.CopyTagsFrom(it) return out } // Nexting the iterator is unsupported -- error and return an empty set. // (As above, a reasonable alternative would be to Next() an all iterator) -func (o *OptionalIterator) Next() (TSVal, bool) { +func (it *OptionalIterator) Next() (TSVal, bool) { glog.Errorln("Nexting an un-nextable iterator") return nil, false } @@ -74,9 +75,9 @@ func (o *OptionalIterator) Next() (TSVal, bool) { // An optional iterator only has a next result if, (a) last time we checked // we had any results whatsoever, and (b) there was another subresult in our // optional subbranch. -func (o *OptionalIterator) NextResult() bool { - if o.lastCheck { - return o.subIt.NextResult() +func (it *OptionalIterator) NextResult() bool { + if it.lastCheck { + return it.subIt.NextResult() } return false } @@ -84,48 +85,48 @@ func (o *OptionalIterator) NextResult() bool { // Check() is the real hack of this iterator. It always returns true, regardless // of whether the subiterator matched. But we keep track of whether the subiterator // matched for results purposes. -func (o *OptionalIterator) Check(val TSVal) bool { - checked := o.subIt.Check(val) - o.lastCheck = checked - o.Last = val +func (it *OptionalIterator) Check(val TSVal) bool { + checked := it.subIt.Check(val) + it.lastCheck = checked + it.Last = val return true } // If we failed the check, then the subiterator should not contribute to the result // set. Otherwise, go ahead and tag it. -func (o *OptionalIterator) TagResults(out *map[string]TSVal) { - if o.lastCheck == false { +func (it *OptionalIterator) TagResults(out *map[string]TSVal) { + if it.lastCheck == false { return } - o.subIt.TagResults(out) + it.subIt.TagResults(out) } // Registers the optional iterator. -func (o *OptionalIterator) Type() string { return "optional" } +func (it *OptionalIterator) Type() string { return "optional" } // Prints the optional and it's subiterator. -func (o *OptionalIterator) DebugString(indent int) string { +func (it *OptionalIterator) DebugString(indent int) string { return fmt.Sprintf("%s(%s tags:%s\n%s)", strings.Repeat(" ", indent), - o.Type(), - o.Tags(), - o.subIt.DebugString(indent+4)) + it.Type(), + it.Tags(), + it.subIt.DebugString(indent+4)) } // There's nothing to optimize for an optional. Optimize the subiterator and // potentially replace it. -func (o *OptionalIterator) Optimize() (Iterator, bool) { - newSub, changed := o.subIt.Optimize() +func (it *OptionalIterator) Optimize() (Iterator, bool) { + newSub, changed := it.subIt.Optimize() if changed { - o.subIt.Close() - o.subIt = newSub + it.subIt.Close() + it.subIt = newSub } - return o, false + return it, false } // We're only as expensive as our subiterator. Except, we can't be nexted. -func (o *OptionalIterator) GetStats() *IteratorStats { - subStats := o.subIt.GetStats() +func (it *OptionalIterator) GetStats() *IteratorStats { + subStats := it.subIt.GetStats() return &IteratorStats{ CheckCost: subStats.CheckCost, NextCost: int64(1 << 62), diff --git a/graph/or_iterator.go b/graph/or_iterator.go index a0de623..5844898 100644 --- a/graph/or_iterator.go +++ b/graph/or_iterator.go @@ -54,68 +54,68 @@ func NewShortCircuitOrIterator() *OrIterator { } // Reset all internal iterators -func (or *OrIterator) Reset() { - for _, it := range or.internalIterators { - it.Reset() +func (it *OrIterator) Reset() { + for _, sub := range it.internalIterators { + sub.Reset() } - or.currentIterator = -1 + it.currentIterator = -1 } -func (or *OrIterator) Clone() Iterator { - var newOr *OrIterator - if or.isShortCircuiting { - newOr = NewShortCircuitOrIterator() +func (it *OrIterator) Clone() Iterator { + var or *OrIterator + if it.isShortCircuiting { + or = NewShortCircuitOrIterator() } else { - newOr = NewOrIterator() + or = NewOrIterator() } - for _, it := range or.internalIterators { - newOr.AddSubIterator(it.Clone()) + for _, sub := range it.internalIterators { + or.AddSubIterator(sub.Clone()) } - or.CopyTagsFrom(or) - return newOr + it.CopyTagsFrom(it) + return or } // Returns a list.List of the subiterators, in order. -func (or *OrIterator) GetSubIterators() *list.List { +func (it *OrIterator) GetSubIterators() *list.List { l := list.New() - for _, it := range or.internalIterators { - l.PushBack(it) + for _, sub := range it.internalIterators { + l.PushBack(sub) } return l } // Overrides BaseIterator TagResults, as it needs to add it's own results and // recurse down it's subiterators. -func (or *OrIterator) TagResults(out *map[string]TSVal) { - or.BaseIterator.TagResults(out) - or.internalIterators[or.currentIterator].TagResults(out) +func (it *OrIterator) TagResults(out *map[string]TSVal) { + it.BaseIterator.TagResults(out) + it.internalIterators[it.currentIterator].TagResults(out) } // DEPRECATED Returns the ResultTree for this iterator, recurses to it's subiterators. -func (or *OrIterator) GetResultTree() *ResultTree { - tree := NewResultTree(or.LastResult()) - for _, it := range or.internalIterators { - tree.AddSubtree(it.GetResultTree()) +func (it *OrIterator) GetResultTree() *ResultTree { + tree := NewResultTree(it.LastResult()) + for _, sub := range it.internalIterators { + tree.AddSubtree(sub.GetResultTree()) } return tree } // Prints information about this iterator. -func (or *OrIterator) DebugString(indent int) string { +func (it *OrIterator) DebugString(indent int) string { var total string - for i, it := range or.internalIterators { + for i, sub := range it.internalIterators { total += strings.Repeat(" ", indent+2) - total += fmt.Sprintf("%d:\n%s\n", i, it.DebugString(indent+4)) + total += fmt.Sprintf("%d:\n%s\n", i, sub.DebugString(indent+4)) } var tags string - for _, k := range or.Tags() { + for _, k := range it.Tags() { tags += fmt.Sprintf("%s;", k) } spaces := strings.Repeat(" ", indent+2) return fmt.Sprintf("%s(%s\n%stags:%s\n%sits:\n%s)", strings.Repeat(" ", indent), - or.Type(), + it.Type(), spaces, tags, spaces, @@ -123,49 +123,49 @@ func (or *OrIterator) DebugString(indent int) string { } // Add a subiterator to this Or iterator. Order matters. -func (or *OrIterator) AddSubIterator(sub Iterator) { - or.internalIterators = append(or.internalIterators, sub) - or.itCount++ +func (it *OrIterator) AddSubIterator(sub Iterator) { + it.internalIterators = append(it.internalIterators, sub) + it.itCount++ } // Returns the Next value from the Or iterator. Because the Or is the // union of its subiterators, it must produce from all subiterators -- unless // it's shortcircuiting, in which case, it's the first one that returns anything. -func (or *OrIterator) Next() (TSVal, bool) { - NextLogIn(or) +func (it *OrIterator) Next() (TSVal, bool) { + NextLogIn(it) var curr TSVal var exists bool firstTime := false for { - if or.currentIterator == -1 { - or.currentIterator = 0 + if it.currentIterator == -1 { + it.currentIterator = 0 firstTime = true } - curIt := or.internalIterators[or.currentIterator] + curIt := it.internalIterators[it.currentIterator] curr, exists = curIt.Next() if !exists { - if or.isShortCircuiting && !firstTime { - return NextLogOut(or, nil, false) + if it.isShortCircuiting && !firstTime { + return NextLogOut(it, nil, false) } - or.currentIterator++ - if or.currentIterator == or.itCount { - return NextLogOut(or, nil, false) + it.currentIterator++ + if it.currentIterator == it.itCount { + return NextLogOut(it, nil, false) } } else { - or.Last = curr - return NextLogOut(or, curr, true) + it.Last = curr + return NextLogOut(it, curr, true) } } panic("Somehow broke out of Next() loop in OrIterator") } // Checks a value against the iterators, in order. -func (or *OrIterator) checkSubIts(val TSVal) bool { +func (it *OrIterator) checkSubIts(val TSVal) bool { var subIsGood = false - for i, it := range or.internalIterators { - subIsGood = it.Check(val) + for i, sub := range it.internalIterators { + subIsGood = sub.Check(val) if subIsGood { - or.currentIterator = i + it.currentIterator = i break } } @@ -173,27 +173,27 @@ func (or *OrIterator) checkSubIts(val TSVal) bool { } // Check a value against the entire iterator, in order. -func (or *OrIterator) Check(val TSVal) bool { - CheckLogIn(or, val) - anyGood := or.checkSubIts(val) +func (it *OrIterator) Check(val TSVal) bool { + CheckLogIn(it, val) + anyGood := it.checkSubIts(val) if !anyGood { - return CheckLogOut(or, val, false) + return CheckLogOut(it, val, false) } - or.Last = val - return CheckLogOut(or, val, true) + it.Last = val + return CheckLogOut(it, val, true) } // Returns the approximate size of the Or iterator. Because we're dealing // with a union, we know that the largest we can be is the sum of all the iterators, // or in the case of short-circuiting, the longest. -func (or *OrIterator) Size() (int64, bool) { +func (it *OrIterator) Size() (int64, bool) { var val int64 var b bool - if or.isShortCircuiting { + if it.isShortCircuiting { val = 0 b = true - for _, it := range or.internalIterators { - newval, newb := it.Size() + for _, sub := range it.internalIterators { + newval, newb := sub.Size() if val < newval { val = newval } @@ -202,8 +202,8 @@ func (or *OrIterator) Size() (int64, bool) { } else { val = 0 b = true - for _, it := range or.internalIterators { - newval, newb := it.Size() + for _, sub := range it.internalIterators { + newval, newb := sub.Size() val += newval b = newb && b } @@ -215,34 +215,34 @@ func (or *OrIterator) Size() (int64, bool) { // which satisfy our previous result that are not the result itself. Our // subiterators might, however, so just pass the call recursively. In the case of // shortcircuiting, only allow new results from the currently checked iterator -func (or *OrIterator) NextResult() bool { - if or.currentIterator != -1 { - return or.internalIterators[or.currentIterator].NextResult() +func (it *OrIterator) NextResult() bool { + if it.currentIterator != -1 { + return it.internalIterators[it.currentIterator].NextResult() } return false } // Perform or-specific cleanup, of which there currently is none. -func (or *OrIterator) cleanUp() {} +func (it *OrIterator) cleanUp() {} // Close this iterator, and, by extension, close the subiterators. // Close should be idempotent, and it follows that if it's subiterators // follow this contract, the And follows the contract. -func (or *OrIterator) Close() { - or.cleanUp() - for _, it := range or.internalIterators { - it.Close() +func (it *OrIterator) Close() { + it.cleanUp() + for _, sub := range it.internalIterators { + sub.Close() } } -func (or *OrIterator) Optimize() (Iterator, bool) { - oldItList := or.GetSubIterators() +func (it *OrIterator) Optimize() (Iterator, bool) { + oldItList := it.GetSubIterators() itList := optimizeSubIterators(oldItList) // Close the replaced iterators (they ought to close themselves, but Close() // is idempotent, so this just protects against any machinations). closeIteratorList(oldItList, nil) newOr := NewOrIterator() - newOr.isShortCircuiting = or.isShortCircuiting + newOr.isShortCircuiting = it.isShortCircuiting // Add the subiterators in order. for e := itList.Front(); e != nil; e = e.Next() { @@ -250,24 +250,24 @@ func (or *OrIterator) Optimize() (Iterator, bool) { } // Move the tags hanging on us (like any good replacement). - newOr.CopyTagsFrom(or) + newOr.CopyTagsFrom(it) // And close ourselves but not our subiterators -- some may still be alive in // the new And (they were unchanged upon calling Optimize() on them, at the // start). - or.cleanUp() + it.cleanUp() return newOr, true } -func (or *OrIterator) GetStats() *IteratorStats { +func (it *OrIterator) GetStats() *IteratorStats { CheckCost := int64(0) NextCost := int64(0) Size := int64(0) - for _, it := range or.internalIterators { - stats := it.GetStats() + for _, sub := range it.internalIterators { + stats := sub.GetStats() NextCost += stats.NextCost CheckCost += stats.CheckCost - if or.isShortCircuiting { + if it.isShortCircuiting { if Size < stats.Size { Size = stats.Size } @@ -284,4 +284,4 @@ func (or *OrIterator) GetStats() *IteratorStats { } // Register this as an "or" iterator. -func (or *OrIterator) Type() string { return "or" } +func (it *OrIterator) Type() string { return "or" } diff --git a/graph/result_tree_evaluator.go b/graph/result_tree_evaluator.go index e75cf56..f6b50e2 100644 --- a/graph/result_tree_evaluator.go +++ b/graph/result_tree_evaluator.go @@ -25,16 +25,16 @@ type ResultTree struct { } func NewResultTree(result TSVal) *ResultTree { - var tree ResultTree - tree.subtrees = list.New() - tree.result = result - return &tree + var t ResultTree + t.subtrees = list.New() + t.result = result + return &t } -func (tree *ResultTree) ToString() string { - base := fmt.Sprintf("(%d", tree.result) - if tree.subtrees.Len() != 0 { - for e := tree.subtrees.Front(); e != nil; e = e.Next() { +func (t *ResultTree) ToString() string { + base := fmt.Sprintf("(%d", t.result) + if t.subtrees.Len() != 0 { + for e := t.subtrees.Front(); e != nil; e = e.Next() { base += fmt.Sprintf(" %s", (e.Value.(*ResultTree)).ToString()) } } @@ -42,8 +42,8 @@ func (tree *ResultTree) ToString() string { return base } -func (tree *ResultTree) AddSubtree(sub *ResultTree) { - tree.subtrees.PushBack(sub) +func (t *ResultTree) AddSubtree(sub *ResultTree) { + t.subtrees.PushBack(sub) } func StringResultTreeEvaluator(it Iterator) string { diff --git a/graph/value_comparison_iterator.go b/graph/value_comparison_iterator.go index ecfe86e..2224aab 100644 --- a/graph/value_comparison_iterator.go +++ b/graph/value_comparison_iterator.go @@ -68,30 +68,30 @@ func NewValueComparisonIterator( // Here's the non-boilerplate part of the ValueComparison iterator. Given a value // and our operator, determine whether or not we meet the requirement. -func (vc *ValueComparisonIterator) doComparison(val TSVal) bool { +func (it *ValueComparisonIterator) doComparison(val TSVal) bool { //TODO(barakmich): Implement string comparison. - nodeStr := vc.ts.GetNameFor(val) - switch cVal := vc.comparisonValue.(type) { + nodeStr := it.ts.GetNameFor(val) + switch cVal := it.comparisonValue.(type) { case int: cInt := int64(cVal) intVal, err := strconv.ParseInt(nodeStr, 10, 64) if err != nil { return false } - return RunIntOp(intVal, vc.op, cInt) + return RunIntOp(intVal, it.op, cInt) case int64: intVal, err := strconv.ParseInt(nodeStr, 10, 64) if err != nil { return false } - return RunIntOp(intVal, vc.op, cVal) + return RunIntOp(intVal, it.op, cVal) default: return true } } -func (vc *ValueComparisonIterator) Close() { - vc.subIt.Close() +func (it *ValueComparisonIterator) Close() { + it.subIt.Close() } func RunIntOp(a int64, op ComparisonOperator, b int64) bool { @@ -110,84 +110,84 @@ func RunIntOp(a int64, op ComparisonOperator, b int64) bool { } } -func (vc *ValueComparisonIterator) Reset() { - vc.subIt.Reset() +func (it *ValueComparisonIterator) Reset() { + it.subIt.Reset() } -func (vc *ValueComparisonIterator) Clone() Iterator { - out := NewValueComparisonIterator(vc.subIt.Clone(), vc.op, vc.comparisonValue, vc.ts) - out.CopyTagsFrom(vc) +func (it *ValueComparisonIterator) Clone() Iterator { + out := NewValueComparisonIterator(it.subIt.Clone(), it.op, it.comparisonValue, it.ts) + out.CopyTagsFrom(it) return out } -func (vc *ValueComparisonIterator) Next() (TSVal, bool) { +func (it *ValueComparisonIterator) Next() (TSVal, bool) { var val TSVal var ok bool for { - val, ok = vc.subIt.Next() + val, ok = it.subIt.Next() if !ok { return nil, false } - if vc.doComparison(val) { + if it.doComparison(val) { break } } - vc.Last = val + it.Last = val return val, ok } -func (vc *ValueComparisonIterator) NextResult() bool { +func (it *ValueComparisonIterator) NextResult() bool { for { - hasNext := vc.subIt.NextResult() + hasNext := it.subIt.NextResult() if !hasNext { return false } - if vc.doComparison(vc.subIt.LastResult()) { + if it.doComparison(it.subIt.LastResult()) { return true } } - vc.Last = vc.subIt.LastResult() + it.Last = it.subIt.LastResult() return true } -func (vc *ValueComparisonIterator) Check(val TSVal) bool { - if !vc.doComparison(val) { +func (it *ValueComparisonIterator) Check(val TSVal) bool { + if !it.doComparison(val) { return false } - return vc.subIt.Check(val) + return it.subIt.Check(val) } // If we failed the check, then the subiterator should not contribute to the result // set. Otherwise, go ahead and tag it. -func (vc *ValueComparisonIterator) TagResults(out *map[string]TSVal) { - vc.BaseIterator.TagResults(out) - vc.subIt.TagResults(out) +func (it *ValueComparisonIterator) TagResults(out *map[string]TSVal) { + it.BaseIterator.TagResults(out) + it.subIt.TagResults(out) } // Registers the value-comparison iterator. -func (vc *ValueComparisonIterator) Type() string { return "value-comparison" } +func (it *ValueComparisonIterator) Type() string { return "value-comparison" } // Prints the value-comparison and its subiterator. -func (vc *ValueComparisonIterator) DebugString(indent int) string { +func (it *ValueComparisonIterator) DebugString(indent int) string { return fmt.Sprintf("%s(%s\n%s)", strings.Repeat(" ", indent), - vc.Type(), vc.subIt.DebugString(indent+4)) + it.Type(), it.subIt.DebugString(indent+4)) } // There's nothing to optimize, locally, for a value-comparison iterator. // Replace the underlying iterator if need be. // potentially replace it. -func (vc *ValueComparisonIterator) Optimize() (Iterator, bool) { - newSub, changed := vc.subIt.Optimize() +func (it *ValueComparisonIterator) Optimize() (Iterator, bool) { + newSub, changed := it.subIt.Optimize() if changed { - vc.subIt.Close() - vc.subIt = newSub + it.subIt.Close() + it.subIt = newSub } - return vc, false + return it, false } // We're only as expensive as our subiterator. // Again, optimized value comparison iterators should do better. -func (vc *ValueComparisonIterator) GetStats() *IteratorStats { - return vc.subIt.GetStats() +func (it *ValueComparisonIterator) GetStats() *IteratorStats { + return it.subIt.GetStats() }