Move iterators into separate package
Also reduce API exposure and use standard library more - and fix bugs I previously introduces in mongo.
This commit is contained in:
parent
88be6bee37
commit
1768e593a8
62 changed files with 3240 additions and 3130 deletions
223
graph/iterator/hasa_iterator.go
Normal file
223
graph/iterator/hasa_iterator.go
Normal file
|
|
@ -0,0 +1,223 @@
|
|||
// Copyright 2014 The Cayley Authors. All rights reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package iterator
|
||||
|
||||
// Defines one of the base iterators, the HasA iterator. The HasA takes a
|
||||
// subiterator of links, and acts as an iterator of nodes in the given
|
||||
// direction. The name comes from the idea that a "link HasA subject" or a "link
|
||||
// HasA predicate".
|
||||
//
|
||||
// HasA is weird in that it may return the same value twice if on the Next()
|
||||
// path. That's okay -- in reality, it can be viewed as returning the value for
|
||||
// a new triple, but to make logic much simpler, here we have the HasA.
|
||||
//
|
||||
// Likewise, it's important to think about Check()ing a HasA. When given a
|
||||
// value to check, it means "Check all predicates that have this value for your
|
||||
// direction against the subiterator." This would imply that there's more than
|
||||
// one possibility for the same Check()ed value. While we could return the
|
||||
// number of options, it's simpler to return one, and then call NextResult()
|
||||
// enough times to enumerate the options. (In fact, one could argue that the
|
||||
// raison d'etre for NextResult() is this iterator).
|
||||
//
|
||||
// Alternatively, can be seen as the dual of the LinksTo iterator.
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"strings"
|
||||
|
||||
"github.com/barakmich/glog"
|
||||
|
||||
"github.com/google/cayley/graph"
|
||||
)
|
||||
|
||||
// A HasA consists of a reference back to the graph.TripleStore that it references,
|
||||
// a primary subiterator, a direction in which the triples for that subiterator point,
|
||||
// and a temporary holder for the iterator generated on Check().
|
||||
type HasA struct {
|
||||
Base
|
||||
ts graph.TripleStore
|
||||
primaryIt graph.Iterator
|
||||
dir graph.Direction
|
||||
resultIt graph.Iterator
|
||||
}
|
||||
|
||||
// Construct a new HasA iterator, given the triple subiterator, and the triple
|
||||
// direction for which it stands.
|
||||
func NewHasA(ts graph.TripleStore, subIt graph.Iterator, d graph.Direction) *HasA {
|
||||
var hasa HasA
|
||||
BaseInit(&hasa.Base)
|
||||
hasa.ts = ts
|
||||
hasa.primaryIt = subIt
|
||||
hasa.dir = d
|
||||
return &hasa
|
||||
}
|
||||
|
||||
// Return our sole subiterator.
|
||||
func (it *HasA) GetSubIterators() []graph.Iterator {
|
||||
return []graph.Iterator{it.primaryIt}
|
||||
}
|
||||
|
||||
func (it *HasA) Reset() {
|
||||
it.primaryIt.Reset()
|
||||
if it.resultIt != nil {
|
||||
it.resultIt.Close()
|
||||
}
|
||||
}
|
||||
|
||||
func (it *HasA) Clone() graph.Iterator {
|
||||
out := NewHasA(it.ts, it.primaryIt.Clone(), it.dir)
|
||||
out.CopyTagsFrom(it)
|
||||
return out
|
||||
}
|
||||
|
||||
// Direction accessor.
|
||||
func (it *HasA) Direction() graph.Direction { return it.dir }
|
||||
|
||||
// Pass the Optimize() call along to the subiterator. If it becomes Null,
|
||||
// then the HasA becomes Null (there are no triples that have any directions).
|
||||
func (it *HasA) Optimize() (graph.Iterator, bool) {
|
||||
newPrimary, changed := it.primaryIt.Optimize()
|
||||
if changed {
|
||||
it.primaryIt = newPrimary
|
||||
if it.primaryIt.Type() == "null" {
|
||||
return it.primaryIt, true
|
||||
}
|
||||
}
|
||||
return it, false
|
||||
}
|
||||
|
||||
// Pass the TagResults down the chain.
|
||||
func (it *HasA) TagResults(out *map[string]graph.TSVal) {
|
||||
it.Base.TagResults(out)
|
||||
it.primaryIt.TagResults(out)
|
||||
}
|
||||
|
||||
// DEPRECATED Return results in a ResultTree.
|
||||
func (it *HasA) GetResultTree() *graph.ResultTree {
|
||||
tree := graph.NewResultTree(it.LastResult())
|
||||
tree.AddSubtree(it.primaryIt.GetResultTree())
|
||||
return tree
|
||||
}
|
||||
|
||||
// Print some information about this iterator.
|
||||
func (it *HasA) DebugString(indent int) string {
|
||||
var tags string
|
||||
for _, k := range it.Tags() {
|
||||
tags += fmt.Sprintf("%s;", k)
|
||||
}
|
||||
return fmt.Sprintf("%s(%s %d tags:%s direction:%s\n%s)", strings.Repeat(" ", indent), it.Type(), it.GetUid(), tags, it.dir, it.primaryIt.DebugString(indent+4))
|
||||
}
|
||||
|
||||
// Check a value against our internal iterator. In order to do this, we must first open a new
|
||||
// iterator of "triples that have `val` in our direction", given to us by the triple store,
|
||||
// and then Next() values out of that iterator and Check() them against our subiterator.
|
||||
func (it *HasA) Check(val graph.TSVal) bool {
|
||||
CheckLogIn(it, val)
|
||||
if glog.V(4) {
|
||||
glog.V(4).Infoln("Id is", it.ts.GetNameFor(val))
|
||||
}
|
||||
// TODO(barakmich): Optimize this
|
||||
if it.resultIt != nil {
|
||||
it.resultIt.Close()
|
||||
}
|
||||
it.resultIt = it.ts.GetTripleIterator(it.dir, val)
|
||||
return CheckLogOut(it, val, it.GetCheckResult())
|
||||
}
|
||||
|
||||
// GetCheckResult() is shared code between Check() and GetNextResult() -- calls next on the
|
||||
// result iterator (a triple iterator based on the last checked value) and returns true if
|
||||
// another match is made.
|
||||
func (it *HasA) GetCheckResult() bool {
|
||||
for {
|
||||
linkVal, ok := it.resultIt.Next()
|
||||
if !ok {
|
||||
break
|
||||
}
|
||||
if glog.V(4) {
|
||||
glog.V(4).Infoln("Triple is", it.ts.GetTriple(linkVal))
|
||||
}
|
||||
if it.primaryIt.Check(linkVal) {
|
||||
it.Last = it.ts.GetTripleDirection(linkVal, it.dir)
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// Get the next result that matches this branch.
|
||||
func (it *HasA) NextResult() bool {
|
||||
// Order here is important. If the subiterator has a NextResult, then we
|
||||
// need do nothing -- there is a next result, and we shouldn't move forward.
|
||||
// However, we then need to get the next result from our last Check().
|
||||
//
|
||||
// The upshot is, the end of NextResult() bubbles up from the bottom of the
|
||||
// iterator tree up, and we need to respect that.
|
||||
if it.primaryIt.NextResult() {
|
||||
return true
|
||||
}
|
||||
return it.GetCheckResult()
|
||||
}
|
||||
|
||||
// Get the next result from this iterator. This is simpler than Check. We have a
|
||||
// subiterator we can get a value from, and we can take that resultant triple,
|
||||
// pull our direction out of it, and return that.
|
||||
func (it *HasA) Next() (graph.TSVal, bool) {
|
||||
NextLogIn(it)
|
||||
if it.resultIt != nil {
|
||||
it.resultIt.Close()
|
||||
}
|
||||
it.resultIt = &Null{}
|
||||
|
||||
tID, ok := it.primaryIt.Next()
|
||||
if !ok {
|
||||
return NextLogOut(it, 0, false)
|
||||
}
|
||||
name := it.ts.GetTriple(tID).Get(it.dir)
|
||||
val := it.ts.GetIdFor(name)
|
||||
it.Last = val
|
||||
return NextLogOut(it, val, true)
|
||||
}
|
||||
|
||||
// GetStats() returns the statistics on the HasA iterator. This is curious. Next
|
||||
// cost is easy, it's an extra call or so on top of the subiterator Next cost.
|
||||
// CheckCost involves going to the graph.TripleStore, iterating out values, and hoping
|
||||
// one sticks -- potentially expensive, depending on fanout. Size, however, is
|
||||
// potentially smaller. we know at worst it's the size of the subiterator, but
|
||||
// if there are many repeated values, it could be much smaller in totality.
|
||||
func (it *HasA) GetStats() *graph.IteratorStats {
|
||||
subitStats := it.primaryIt.GetStats()
|
||||
// TODO(barakmich): These should really come from the triplestore itself
|
||||
// and be optimized.
|
||||
faninFactor := int64(1)
|
||||
fanoutFactor := int64(30)
|
||||
nextConstant := int64(2)
|
||||
tripleConstant := int64(1)
|
||||
return &graph.IteratorStats{
|
||||
NextCost: tripleConstant + subitStats.NextCost,
|
||||
CheckCost: (fanoutFactor * nextConstant) * subitStats.CheckCost,
|
||||
Size: faninFactor * subitStats.Size,
|
||||
}
|
||||
}
|
||||
|
||||
// Close the subiterator, the result iterator (if any) and the HasA.
|
||||
func (it *HasA) Close() {
|
||||
if it.resultIt != nil {
|
||||
it.resultIt.Close()
|
||||
}
|
||||
it.primaryIt.Close()
|
||||
}
|
||||
|
||||
// Register this iterator as a HasA.
|
||||
func (it *HasA) Type() string { return "hasa" }
|
||||
Loading…
Add table
Add a link
Reference in a new issue